Feature extraction on digital snow microstructures

Jérémy Levallois, D. Coeurjolly, J. Lachaud
{"title":"Feature extraction on digital snow microstructures","authors":"Jérémy Levallois, D. Coeurjolly, J. Lachaud","doi":"10.1145/2787626.2792637","DOIUrl":null,"url":null,"abstract":"During a snowfall, the snow crystals accumulate on the ground and gradually form a complex porous medium constituted of air, water vapour, ice and sometimes liquid water. This ground-lying snow transforms with time, depending on the physical parameters of the environment. The main purpose of the digitalSnow project is to provide efficient computational tools to study the metamorphism of real snow microstructures from 3D images acquired using X tomography techniques. We design 3D image-based numerical models than can simulate the shape evolution of the snow microstructure during its metamorphism. As a key measurement, (mean) curvature of snow microstructure boundary plays a crucial role in metamorphosis equations (mostly driven by mean curvature flow). In our previous work, we have proposed robust 2D curvature and 3D mean and principal curvatures estimators using integral invariants. In short, curvature quantities are estimated using a spherical convolution kernel with given radius R applied on point surfaces [Coeurjolly et al. 2014]. The specific aspect of these estimators is that they are defined on (isothetic) digital surfaces (boundary of shape in Z3). Tailored for this digital model, these estimators allow us to mathematically prove their multigrid convergence, i.e. for a class of mathematical shapes (e.g. C3-boundary and bounded positive curvature), the estimated quantity converges to the underlying Euclidean one when shapes are digitized on grids with gridstep tending to zero. In this work, we propose to use the radius R of our curvature estimators as a scale-space parameter to extract features on digital shapes. Many feature estimators exist in the literature, either on point clouds or meshes (\"ridge-valley\", threshold on principal curvatures, spectral analysis from Laplacian matrix eigenvalues, . . . ). In the context of objects in Z3 and using our robust curvature estimator, we define a new feature extraction approach on which theoretical results can be proven in the multigrid framework.","PeriodicalId":269034,"journal":{"name":"ACM SIGGRAPH 2015 Posters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2015 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2787626.2792637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

During a snowfall, the snow crystals accumulate on the ground and gradually form a complex porous medium constituted of air, water vapour, ice and sometimes liquid water. This ground-lying snow transforms with time, depending on the physical parameters of the environment. The main purpose of the digitalSnow project is to provide efficient computational tools to study the metamorphism of real snow microstructures from 3D images acquired using X tomography techniques. We design 3D image-based numerical models than can simulate the shape evolution of the snow microstructure during its metamorphism. As a key measurement, (mean) curvature of snow microstructure boundary plays a crucial role in metamorphosis equations (mostly driven by mean curvature flow). In our previous work, we have proposed robust 2D curvature and 3D mean and principal curvatures estimators using integral invariants. In short, curvature quantities are estimated using a spherical convolution kernel with given radius R applied on point surfaces [Coeurjolly et al. 2014]. The specific aspect of these estimators is that they are defined on (isothetic) digital surfaces (boundary of shape in Z3). Tailored for this digital model, these estimators allow us to mathematically prove their multigrid convergence, i.e. for a class of mathematical shapes (e.g. C3-boundary and bounded positive curvature), the estimated quantity converges to the underlying Euclidean one when shapes are digitized on grids with gridstep tending to zero. In this work, we propose to use the radius R of our curvature estimators as a scale-space parameter to extract features on digital shapes. Many feature estimators exist in the literature, either on point clouds or meshes ("ridge-valley", threshold on principal curvatures, spectral analysis from Laplacian matrix eigenvalues, . . . ). In the context of objects in Z3 and using our robust curvature estimator, we define a new feature extraction approach on which theoretical results can be proven in the multigrid framework.
数字积雪微结构特征提取
降雪时,雪晶积聚在地面上,逐渐形成由空气、水蒸气、冰(有时还有液态水)组成的复杂多孔介质。地面上的雪会随着时间而变化,这取决于环境的物理参数。digitalSnow项目的主要目的是提供有效的计算工具,从使用X层析成像技术获得的3D图像中研究真实积雪微观结构的变质作用。我们设计了基于三维图像的数值模型,可以模拟积雪变形过程中微观结构的形状演变。雪微观结构边界(平均)曲率作为一项关键测量,在变形方程(主要由平均曲率流驱动)中起着至关重要的作用。在我们之前的工作中,我们提出了使用积分不变量的鲁棒二维曲率和三维平均曲率和主曲率估计器。简而言之,曲率量是使用给定半径为R的球面卷积核在点表面上估计的[Coeurjolly et al. 2014]。这些估计量的具体方面是它们在(等等值)数字表面(Z3中的形状边界)上定义。为这个数字模型量身定制,这些估计器允许我们在数学上证明它们的多网格收敛性,即对于一类数学形状(例如c3边界和有界正曲率),当形状在网格上数字化且网格步长趋于零时,估计量收敛到底层欧几里德量。在这项工作中,我们建议使用曲率估计器的半径R作为尺度空间参数来提取数字形状上的特征。文献中存在许多特征估计器,无论是点云还是网格(“脊谷”,主曲率的阈值,拉普拉斯矩阵特征值的谱分析,等等)。. 在Z3中的对象背景下,使用我们的鲁棒曲率估计器,我们定义了一种新的特征提取方法,该方法的理论结果可以在多网格框架中得到证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信