A Dependent Set Theory

Wojciech Moczydlowski
{"title":"A Dependent Set Theory","authors":"Wojciech Moczydlowski","doi":"10.1109/LICS.2007.7","DOIUrl":null,"url":null,"abstract":"Set theories are traditionally based on first-order logic. We show that in a constructive setting, basing a set theory on a dependent logic yields many benefits. To this end, we introduce a dependent impredicative constructive set theory which we call IZFD. Using realizability, we prove that the underlying lambda calculus weakly normalizes, thus enabling program extraction from IZF_D proofs. We also show that IZFD can interpret IZF with Collection. By a wellknown result of Friedman, this establishes IZFD as a remarkably strong theory, with proof-theoretical power equal to that of ZFC. We further demonstrate that IZFD provides a natural framework to interpret first-order definitions, thus removing a longstanding barrier to implementing constructive set theories. Finally, we prove that IZFD extended with excluded middle is consistent, thus paving the way to using our framework in the classical setting as well.","PeriodicalId":137827,"journal":{"name":"22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2007.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Set theories are traditionally based on first-order logic. We show that in a constructive setting, basing a set theory on a dependent logic yields many benefits. To this end, we introduce a dependent impredicative constructive set theory which we call IZFD. Using realizability, we prove that the underlying lambda calculus weakly normalizes, thus enabling program extraction from IZF_D proofs. We also show that IZFD can interpret IZF with Collection. By a wellknown result of Friedman, this establishes IZFD as a remarkably strong theory, with proof-theoretical power equal to that of ZFC. We further demonstrate that IZFD provides a natural framework to interpret first-order definitions, thus removing a longstanding barrier to implementing constructive set theories. Finally, we prove that IZFD extended with excluded middle is consistent, thus paving the way to using our framework in the classical setting as well.
相依集合论
集合论传统上是基于一阶逻辑的。我们表明,在建设性的设置中,基于依赖逻辑的集合理论产生了许多好处。为此,我们引入了一个相依谓词构造集理论,我们称之为IZFD。利用可实现性,我们证明了底层lambda演算弱归一化,从而实现了从IZF_D证明中提取程序。我们还展示了IZFD可以用Collection解释IZF。通过Friedman的一个著名的结果,这建立了IZFD作为一个非常强大的理论,具有与ZFC相等的理论证明能力。我们进一步证明了IZFD提供了一个解释一阶定义的自然框架,从而消除了实施建设性集合论的长期障碍。最后,我们证明了排除中间扩展的IZFD是一致的,从而为在经典环境下使用我们的框架铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信