Biometric Clustering of ECG using Wave Peaks

M. Milivojević, A. Gavrovska, I. Reljin
{"title":"Biometric Clustering of ECG using Wave Peaks","authors":"M. Milivojević, A. Gavrovska, I. Reljin","doi":"10.1109/NEUREL.2018.8587016","DOIUrl":null,"url":null,"abstract":"The use of ECG signals for biometric recognition is in the focus of scientific research. For each person electrocardiogram which contain specific biometric characteristics can be recorded making it suitable for biometric application. A comparison of features in terms of potential person identification, i.e. clustering needs, is made, where amplitude characteristics are extracted in time domain. This paper analyzes data from the Physionet ECG-ID database, and show promising results for future ECG based considerations.","PeriodicalId":371831,"journal":{"name":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2018.8587016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of ECG signals for biometric recognition is in the focus of scientific research. For each person electrocardiogram which contain specific biometric characteristics can be recorded making it suitable for biometric application. A comparison of features in terms of potential person identification, i.e. clustering needs, is made, where amplitude characteristics are extracted in time domain. This paper analyzes data from the Physionet ECG-ID database, and show promising results for future ECG based considerations.
基于波峰的心电生物特征聚类
利用心电信号进行生物特征识别是目前科学研究的热点。可以记录每个人的心电图,其中包含特定的生物特征,使其适合生物识别应用。根据潜在的人识别,即聚类需求,对特征进行比较,其中在时域中提取振幅特征。本文分析了来自Physionet ECG- id数据库的数据,并展示了未来基于ECG的考虑的有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信