Identifying Relevant Changes for Incremental Verification of Evolving Software Systems

Bharti Chimdyalwar, Anushri Jana, Shrawan Kumar, Ankita Khadsare, Vaidehi Ghime
{"title":"Identifying Relevant Changes for Incremental Verification of Evolving Software Systems","authors":"Bharti Chimdyalwar, Anushri Jana, Shrawan Kumar, Ankita Khadsare, Vaidehi Ghime","doi":"10.1109/saner53432.2022.00083","DOIUrl":null,"url":null,"abstract":"Modern software verification tools are moving towards incremental verification of program properties to ensure safety of evolving software systems. These tools analyze each and every change in the code. However, not every change in the program impacts verification outcome of program properties. Moreover, analyzing these irrelevant changes adds to cost of incremental verification. To address this, we are proposing a light-weight pre-analysis phase that identifies relevant changes with respect to program properties before applying any incremental verification technique. To identify such relevant changes, we present the Relevant Change Identification Technique (RCIT). RCIT uses a variant of the Strongly Live Variables (SLV) analysis to compute variables that are influencing the verification outcome of program properties. RCIT, then uses these variables to identify relevant changes. We evaluated RCIT on the changes made in five versions of open source applications with respect to two type of program properties - array index out of bound and zero division. RCIT identifies 59% of the actual changes as irrelevant.","PeriodicalId":437520,"journal":{"name":"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/saner53432.2022.00083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern software verification tools are moving towards incremental verification of program properties to ensure safety of evolving software systems. These tools analyze each and every change in the code. However, not every change in the program impacts verification outcome of program properties. Moreover, analyzing these irrelevant changes adds to cost of incremental verification. To address this, we are proposing a light-weight pre-analysis phase that identifies relevant changes with respect to program properties before applying any incremental verification technique. To identify such relevant changes, we present the Relevant Change Identification Technique (RCIT). RCIT uses a variant of the Strongly Live Variables (SLV) analysis to compute variables that are influencing the verification outcome of program properties. RCIT, then uses these variables to identify relevant changes. We evaluated RCIT on the changes made in five versions of open source applications with respect to two type of program properties - array index out of bound and zero division. RCIT identifies 59% of the actual changes as irrelevant.
为不断发展的软件系统的增量验证识别相关变更
现代软件验证工具正朝着对程序属性进行增量验证的方向发展,以确保不断发展的软件系统的安全性。这些工具分析代码中的每一个更改。然而,并不是程序中的每个更改都会影响程序属性的验证结果。此外,分析这些不相关的更改会增加增量验证的成本。为了解决这个问题,我们提出了一个轻量级的预分析阶段,在应用任何增量验证技术之前,确定与程序属性相关的更改。为了识别这些相关变化,我们提出了相关变化识别技术(RCIT)。RCIT使用强活变量(SLV)分析的一种变体来计算影响程序属性验证结果的变量。RCIT,然后使用这些变量来识别相关的更改。我们在五个版本的开源应用程序中针对两种类型的程序属性(数组索引越界和零除法)对RCIT进行了评估。RCIT识别出59%的实际变化是不相关的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信