Three-dimensional temperature distribution mapping by generative adversarial network in low light environment using thermography

Shohei Oka, Yonghoon Ji, Hiromitsu Fujii, H. Kono
{"title":"Three-dimensional temperature distribution mapping by generative adversarial network in low light environment using thermography","authors":"Shohei Oka, Yonghoon Ji, Hiromitsu Fujii, H. Kono","doi":"10.1117/12.3000051","DOIUrl":null,"url":null,"abstract":"In this study, we propose a new framework to perform visual simultaneous localization and mapping (SLAM) with RGB images artificially generated from thermal images in low light environments where an optical camera cannot be applied. We applied contrastive unpaired translation (CUT) and enhanced generative adversarial network for super-resolution (ESRGAN), which are image translation methods to generate a clear realistic RGB image from a thermal image. Oriented FAST and rotated BRIEF (ORB)-SLAM was performed using the super-resolution fake RGB image to generate a 3D point cloud. Experimental results showed that our thermography-based visual SLAM could generate a 3D temperature distribution map in the low light environment.","PeriodicalId":295011,"journal":{"name":"International Conference on Quality Control by Artificial Vision","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Quality Control by Artificial Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3000051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we propose a new framework to perform visual simultaneous localization and mapping (SLAM) with RGB images artificially generated from thermal images in low light environments where an optical camera cannot be applied. We applied contrastive unpaired translation (CUT) and enhanced generative adversarial network for super-resolution (ESRGAN), which are image translation methods to generate a clear realistic RGB image from a thermal image. Oriented FAST and rotated BRIEF (ORB)-SLAM was performed using the super-resolution fake RGB image to generate a 3D point cloud. Experimental results showed that our thermography-based visual SLAM could generate a 3D temperature distribution map in the low light environment.
生成对抗网络在弱光环境下的三维温度分布映射
在这项研究中,我们提出了一个新的框架,在光学相机无法应用的低光环境下,使用由热图像人工生成的RGB图像进行视觉同步定位和映射(SLAM)。我们采用对比不配对翻译(CUT)和增强生成对抗网络超分辨率(ESRGAN)这两种图像翻译方法,从热图像中生成清晰逼真的RGB图像。利用超分辨率伪RGB图像进行定向FAST和旋转BRIEF (ORB)-SLAM生成三维点云。实验结果表明,基于热像仪的视觉SLAM可以在弱光环境下生成三维温度分布图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信