{"title":"Power Consumption Optimization of a Wireless Temperature Sensor Node Using Unidirectional Communication","authors":"R. Taherkhani, S. Nihtianov","doi":"10.1109/INDIN41052.2019.8972226","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks (WSNs) are gaining increasing popularity in industry. Success of these systems depends on two very important factors: power efficiency of the sensor nodes and communication reliability. In this paper, we investigate the effect of using unidirectional (broadcasting) communication on the power consumption and reliability of a wireless sensor node. A high-precision wireless temperature sensor reported in an earlier publication is employed as a case study. First, we calculate the energy required to transmit and receive a message using Bluetooth low energy (BLE) in the physical layer without taking any reliability precautions. Then, we estimate the amount of energy required for the reliable transmission of a BLE packet using the BLE acknowledgment method and forward error correction (FEC) in the application layer. Through this paper, we show that the power consumption of a wireless temperature sensor can be reduced using broadcast communication and simultaneous forward error correction while providing enough reliability in short ranges.","PeriodicalId":260220,"journal":{"name":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN41052.2019.8972226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Wireless sensor networks (WSNs) are gaining increasing popularity in industry. Success of these systems depends on two very important factors: power efficiency of the sensor nodes and communication reliability. In this paper, we investigate the effect of using unidirectional (broadcasting) communication on the power consumption and reliability of a wireless sensor node. A high-precision wireless temperature sensor reported in an earlier publication is employed as a case study. First, we calculate the energy required to transmit and receive a message using Bluetooth low energy (BLE) in the physical layer without taking any reliability precautions. Then, we estimate the amount of energy required for the reliable transmission of a BLE packet using the BLE acknowledgment method and forward error correction (FEC) in the application layer. Through this paper, we show that the power consumption of a wireless temperature sensor can be reduced using broadcast communication and simultaneous forward error correction while providing enough reliability in short ranges.