{"title":"A Time Warping Speech Recognition System Based on Particle Swarm Optimization","authors":"Saeed Rategh, F. Razzazi, A. Rahmani, S. Gharan","doi":"10.1109/AMS.2008.156","DOIUrl":null,"url":null,"abstract":"In this paper, dynamic programming alignment is replaced by a particle swarm optimization (PSO) procedure in time warping problem. The basic PSO is a very slow process to be applied to speech recognition application. In order to achieve a higher performance, by inspiring of PSO optimization methodology, we introduced a PSO inspired time warping algorithm (PTW) that significantly increase the computational performance of time warping in alignments of long length massive data sets. As a main enhancement, a pruning strategy with an add-in controlling threshold is defined in PTW that causes a considerable reduction in recognition time, while maintaining the system accuracy comparing to DTW.","PeriodicalId":122964,"journal":{"name":"2008 Second Asia International Conference on Modelling & Simulation (AMS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second Asia International Conference on Modelling & Simulation (AMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2008.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, dynamic programming alignment is replaced by a particle swarm optimization (PSO) procedure in time warping problem. The basic PSO is a very slow process to be applied to speech recognition application. In order to achieve a higher performance, by inspiring of PSO optimization methodology, we introduced a PSO inspired time warping algorithm (PTW) that significantly increase the computational performance of time warping in alignments of long length massive data sets. As a main enhancement, a pruning strategy with an add-in controlling threshold is defined in PTW that causes a considerable reduction in recognition time, while maintaining the system accuracy comparing to DTW.