Machine Learning Aided Prediction of Rain Erosion Damage on Wind Turbine Blade Sections

A. Castorrini, P. Venturini, Fabrizio Gerboni, A. Corsini, F. Rispoli
{"title":"Machine Learning Aided Prediction of Rain Erosion Damage on Wind Turbine Blade Sections","authors":"A. Castorrini, P. Venturini, Fabrizio Gerboni, A. Corsini, F. Rispoli","doi":"10.1115/gt2021-59156","DOIUrl":null,"url":null,"abstract":"\n Rain erosion of wind turbine blades represents an interesting topic of study due to its non-negligible impact on annual energy production of the wind farms installed in rainy sites. A considerable amount of recent research works has been oriented to this subject, proposing rain erosion modelling, performance losses prediction, structural issues studies, etc. This work aims to present a new method to predict the damage on a wind turbine blade. The method is applied here to study the effect of different rain conditions and blade coating materials, on the damage produced by the rain over a representative section of a reference 5MW turbine blade operating in normal turbulence wind conditions.","PeriodicalId":166333,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine; Wind Energy; Scholar Lecture","volume":"220 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Aircraft Engine; Fans and Blowers; Marine; Wind Energy; Scholar Lecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-59156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rain erosion of wind turbine blades represents an interesting topic of study due to its non-negligible impact on annual energy production of the wind farms installed in rainy sites. A considerable amount of recent research works has been oriented to this subject, proposing rain erosion modelling, performance losses prediction, structural issues studies, etc. This work aims to present a new method to predict the damage on a wind turbine blade. The method is applied here to study the effect of different rain conditions and blade coating materials, on the damage produced by the rain over a representative section of a reference 5MW turbine blade operating in normal turbulence wind conditions.
风力机叶片截面雨蚀损伤的机器学习辅助预测
风力涡轮机叶片的雨水侵蚀是一个有趣的研究课题,因为它对安装在多雨地区的风力发电场的年发电量有着不可忽视的影响。最近有相当多的研究工作都是针对这一主题,提出了雨水侵蚀模型、性能损失预测、结构问题研究等。本工作旨在提出一种预测风力发电机叶片损伤的新方法。本文采用该方法研究了不同降雨条件和叶片涂层材料对正常湍流风条件下5MW参考涡轮叶片典型断面雨损的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信