{"title":"Classifying multi-temporal TM imagery using Markov random fields and support vector machines","authors":"D. Liu, M. Kelly, P. Gong","doi":"10.1109/AMTRSI.2005.1469878","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a spatial-temporally explicit algorithm to simultaneously classify multi-temporal images for land cover information. This algorithm has three steps: first, a machine learning algorithm Support Vector Machines (SVM), is trained with spectral observations to initialize the classification and estimate pixel-by-pixel class conditional probabilities for each individual image; second, Markov Random Fields (MRF) are used to model the spatial-temporal contextual prior probabilities of images; and finally, an iterative algorithm is used to update the classification based on the combination of the spectral class conditional probability and the spatial-temporal contextual prior probability. Increased accuracies from the contributions of spatial-temporal contextual evidence confirmed the importance of spatial-temporal modeling in multi-temporal remote sensing. In this paper, we propose a spatial-temporally explicit algorithm based on Markov Random Fields (MRF) and Support Vector Machines (SVM) to simultaneously classify multi-temporal images for land cover information. We first review SVM and MRF and present our proposed algorithm based on both of them. We then evaluate the algorithm using a real data set and compare the result with conventional non- contextual and partial-contextual (spatial only and temporal only) approaches.","PeriodicalId":302923,"journal":{"name":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMTRSI.2005.1469878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In this paper, we propose a spatial-temporally explicit algorithm to simultaneously classify multi-temporal images for land cover information. This algorithm has three steps: first, a machine learning algorithm Support Vector Machines (SVM), is trained with spectral observations to initialize the classification and estimate pixel-by-pixel class conditional probabilities for each individual image; second, Markov Random Fields (MRF) are used to model the spatial-temporal contextual prior probabilities of images; and finally, an iterative algorithm is used to update the classification based on the combination of the spectral class conditional probability and the spatial-temporal contextual prior probability. Increased accuracies from the contributions of spatial-temporal contextual evidence confirmed the importance of spatial-temporal modeling in multi-temporal remote sensing. In this paper, we propose a spatial-temporally explicit algorithm based on Markov Random Fields (MRF) and Support Vector Machines (SVM) to simultaneously classify multi-temporal images for land cover information. We first review SVM and MRF and present our proposed algorithm based on both of them. We then evaluate the algorithm using a real data set and compare the result with conventional non- contextual and partial-contextual (spatial only and temporal only) approaches.