Efficient author community generation on Nlp based relevance feature detection

M. Revathy, M. Madhavu
{"title":"Efficient author community generation on Nlp based relevance feature detection","authors":"M. Revathy, M. Madhavu","doi":"10.1109/ICCPCT.2017.8074241","DOIUrl":null,"url":null,"abstract":"Many researchers provided different feature discovery techniques, but that shows high time complexity according to the LDA process. It does not provided any user preference for document search history, to avoid this problem a NLP techniques is used. NLP provide maximum pattern for search input so it is generate maximum pattern output. Ranking of the each document is according to the new patterns that generated from NLP. Community generation of documents will be done based on the cluster information; It will help document users to find other documents in the domain. Cluster the whole documents using the technique and applying the advanced ranking. So that the advanced ranking of the relevant feature produce the author community generation process. so that authors can communicate each other.","PeriodicalId":208028,"journal":{"name":"2017 International Conference on Circuit ,Power and Computing Technologies (ICCPCT)","volume":"352 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Circuit ,Power and Computing Technologies (ICCPCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPCT.2017.8074241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Many researchers provided different feature discovery techniques, but that shows high time complexity according to the LDA process. It does not provided any user preference for document search history, to avoid this problem a NLP techniques is used. NLP provide maximum pattern for search input so it is generate maximum pattern output. Ranking of the each document is according to the new patterns that generated from NLP. Community generation of documents will be done based on the cluster information; It will help document users to find other documents in the domain. Cluster the whole documents using the technique and applying the advanced ranking. So that the advanced ranking of the relevant feature produce the author community generation process. so that authors can communicate each other.
基于Nlp相关特征检测的高效作者社区生成
许多研究者提出了不同的特征发现技术,但根据LDA过程,这些技术都显示出较高的时间复杂度。它没有为文档搜索历史提供任何用户偏好,为了避免这个问题,使用了NLP技术。NLP为搜索输入提供最大模式,从而生成最大模式输出。根据NLP生成的新模式对每个文档进行排序。文档的社区生成将基于集群信息完成;它将帮助文档用户查找域中的其他文档。使用该技术对整个文档进行聚类并应用高级排序。从而对相关特征进行高级排序产生作者社区生成过程。这样作者就可以互相交流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信