A hyperbolic bound for the rate monotonic algorithm

Enrico Bini, G. Buttazzo, G. Buttazzo
{"title":"A hyperbolic bound for the rate monotonic algorithm","authors":"Enrico Bini, G. Buttazzo, G. Buttazzo","doi":"10.1109/EMRTS.2001.934000","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel schedulability analysis for verifying the feasibility of large periodic task sets under the rate monotonic algorithm, when the exact test cannot be applied on line due to prohibitively long execution times. The proposed test has the same complexity as the original Liu and Layland bound but it is less pessimistic, so allowing to accept task sets that would be rejected using the original approach. The performance of the proposed approach is evaluated with respect to the classical Liu and Layland method, and theoretical bounds are derived as a function of n (the number of tasks) and for the limit case of n tending to infinity. The analysis is also extended to include aperiodic servers and blocking times due to concurrency control protocols. Extensive simulations on synthetic tasks sets are presented to compare the effectiveness of the proposed test with respect to the Liu and Layland method and the exact response time analysis.","PeriodicalId":292136,"journal":{"name":"Proceedings 13th Euromicro Conference on Real-Time Systems","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"132","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 13th Euromicro Conference on Real-Time Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMRTS.2001.934000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 132

Abstract

In this paper we propose a novel schedulability analysis for verifying the feasibility of large periodic task sets under the rate monotonic algorithm, when the exact test cannot be applied on line due to prohibitively long execution times. The proposed test has the same complexity as the original Liu and Layland bound but it is less pessimistic, so allowing to accept task sets that would be rejected using the original approach. The performance of the proposed approach is evaluated with respect to the classical Liu and Layland method, and theoretical bounds are derived as a function of n (the number of tasks) and for the limit case of n tending to infinity. The analysis is also extended to include aperiodic servers and blocking times due to concurrency control protocols. Extensive simulations on synthetic tasks sets are presented to compare the effectiveness of the proposed test with respect to the Liu and Layland method and the exact response time analysis.
速率单调算法的双曲界
本文提出了一种新的可调度性分析方法,用于验证大周期任务集在速率单调算法下的可行性,当精确的测试由于执行时间过长而无法在线应用时。提议的测试具有与原始Liu和Layland边界相同的复杂性,但它不那么悲观,因此允许接受使用原始方法会被拒绝的任务集。根据经典的Liu和Layland方法对所提出的方法的性能进行了评估,并推导了理论边界作为n(任务数)的函数和n趋于无穷时的极限情况。分析还扩展到包括非周期性服务器和由于并发控制协议造成的阻塞时间。在综合任务集上进行了大量的模拟,以比较所提出的测试与Liu和Layland方法以及准确的响应时间分析的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信