36.2 An EM/Power SCA-Resilient AES-256 with Synthesizable Signature Attenuation Using Digital-Friendly Current Source and RO-Bleed-Based Integrated Local Feedback and Global Switched-Mode Control

A. Ghosh, D. Das, Josef Danial, V. De, Santosh K. Ghosh, Shreyas Sen
{"title":"36.2 An EM/Power SCA-Resilient AES-256 with Synthesizable Signature Attenuation Using Digital-Friendly Current Source and RO-Bleed-Based Integrated Local Feedback and Global Switched-Mode Control","authors":"A. Ghosh, D. Das, Josef Danial, V. De, Santosh K. Ghosh, Shreyas Sen","doi":"10.1109/ISSCC42613.2021.9365978","DOIUrl":null,"url":null,"abstract":"Mathematically secure cryptographic algorithms leak side-channel information in the form of correlated power and electromagnetic (EM) signals, leading to physical side-channel analysis (SCA) attacks. Circuit-level countermeasures against power/EM SCA include current equalizer [1], series LDO [2], IVR [3], enhancing protection up to 10M traces. Recently, current domain signature attenuation [4] and randomized NL-LDO cascaded with arithmetic countermeasures [5] achieved $\\gt1\\mathrm{B}$ minimum traces to disclosure (MTD) with a single and two countermeasures, respectively. Among these, the highest protection with a single strategy is achieved using signature attenuation [4], [6], which utilized a current source making the supply current mostly constant. While being highly resilient to SCA, [4] required analog-biased cascode current sources and an analog bleed path, making it not easily scalable across different technology generations. Conversely, [2], [5] are synthesizable but a single countermeasure only achieved moderate protection (up to 10M MTD). This work embraces the concept of signature attenuation in the current domain, but makes it fully-synthesizable with digital current sources, control loop and the bleed to increase the MTD from 10M [5] to $250\\mathrm{M} (25 \\times $ improvement, Fig. 36.2.1) using a single synthesizable countermeasure. Finally, combining the digital signature attenuation circuit (DSAC) with a second synthesizable generic technique in the form of a time-varying transfer function (TVTF), this work achieves an MTD $\\gt1.25\\mathrm{B}$ for both EM and power SCA.","PeriodicalId":371093,"journal":{"name":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"337 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42613.2021.9365978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Mathematically secure cryptographic algorithms leak side-channel information in the form of correlated power and electromagnetic (EM) signals, leading to physical side-channel analysis (SCA) attacks. Circuit-level countermeasures against power/EM SCA include current equalizer [1], series LDO [2], IVR [3], enhancing protection up to 10M traces. Recently, current domain signature attenuation [4] and randomized NL-LDO cascaded with arithmetic countermeasures [5] achieved $\gt1\mathrm{B}$ minimum traces to disclosure (MTD) with a single and two countermeasures, respectively. Among these, the highest protection with a single strategy is achieved using signature attenuation [4], [6], which utilized a current source making the supply current mostly constant. While being highly resilient to SCA, [4] required analog-biased cascode current sources and an analog bleed path, making it not easily scalable across different technology generations. Conversely, [2], [5] are synthesizable but a single countermeasure only achieved moderate protection (up to 10M MTD). This work embraces the concept of signature attenuation in the current domain, but makes it fully-synthesizable with digital current sources, control loop and the bleed to increase the MTD from 10M [5] to $250\mathrm{M} (25 \times $ improvement, Fig. 36.2.1) using a single synthesizable countermeasure. Finally, combining the digital signature attenuation circuit (DSAC) with a second synthesizable generic technique in the form of a time-varying transfer function (TVTF), this work achieves an MTD $\gt1.25\mathrm{B}$ for both EM and power SCA.
36.2基于数字友好电流源和基于ro -流血的集成局部反馈和全局切换模式控制的EM/Power sca弹性AES-256可合成签名衰减
数学上安全的加密算法以相关功率和电磁(EM)信号的形式泄漏侧信道信息,导致物理侧信道分析(SCA)攻击。针对功率/EM SCA的电路级对策包括电流均衡器[1],系列LDO [2], IVR[3],可增强长达10M走线的保护。近年来,电流域特征衰减[4]和随机化NL-LDO级联算术对抗[5]分别实现了$\gt1\mathrm{B}$最小披露痕迹(MTD)。其中,使用特征衰减[4],[6]实现了单一策略的最高保护,该策略利用电流源使电源电流基本恒定。虽然[4]对SCA具有很高的弹性,但它需要模拟偏级级码电流源和模拟输出路径,这使得它不容易在不同的技术世代之间进行扩展。相反,[2]和[5]是可合成的,但单个对抗措施只能实现中等保护(高达10M MTD)。这项工作包含了电流域中的特征衰减的概念,但使其与数字电流源、控制回路和出血完全合成,使用单个可合成对策将MTD从10M[5]增加到250\ mathm {M}(改进25倍,图36.2.1)。最后,将数字签名衰减电路(DSAC)与时变传递函数(TVTF)形式的第二种可合成通用技术相结合,本工作实现了EM和功率SCA的MTD $\gt1.25\ maththrm {B}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信