Concern-driven Reporting of Software Performance Analysis Results

Dusan Okanovic, A. Hoorn, C. Zorn, Fabian Beck, Vincenzo Ferme, J. Walter
{"title":"Concern-driven Reporting of Software Performance Analysis Results","authors":"Dusan Okanovic, A. Hoorn, C. Zorn, Fabian Beck, Vincenzo Ferme, J. Walter","doi":"10.1145/3302541.3313103","DOIUrl":null,"url":null,"abstract":"State-of-the-art approaches for reporting performance analysis results rely on charts providing insights on the performance of the system, often organized in dashboards. The insights are usually data-driven, i.e., not directly connected to the performance concern leading the users to execute the performance engineering activity, thus limiting the understandability of the provided result. A cause is that the data is presented without further explanations. To solve this problem, we propose a concern-driven approach for reporting of performance evaluation results, shaped around a performance concern stated by a stakeholder and captured by state-of-the-art declarative performance engineering specifications. Starting from the available performance analysis, the approach automatically generates a customized performance report providing a chart- and natural-language-based answer to the concern. In this paper, we introduce the general concept of concern-driven performance analysis reporting and present a first prototype implementation of the approach. We envision that, by applying our approach, reports tailored to user concerns reduce the effort to analyze performance evaluation results.","PeriodicalId":231712,"journal":{"name":"Companion of the 2019 ACM/SPEC International Conference on Performance Engineering","volume":"363 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2019 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3302541.3313103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

State-of-the-art approaches for reporting performance analysis results rely on charts providing insights on the performance of the system, often organized in dashboards. The insights are usually data-driven, i.e., not directly connected to the performance concern leading the users to execute the performance engineering activity, thus limiting the understandability of the provided result. A cause is that the data is presented without further explanations. To solve this problem, we propose a concern-driven approach for reporting of performance evaluation results, shaped around a performance concern stated by a stakeholder and captured by state-of-the-art declarative performance engineering specifications. Starting from the available performance analysis, the approach automatically generates a customized performance report providing a chart- and natural-language-based answer to the concern. In this paper, we introduce the general concept of concern-driven performance analysis reporting and present a first prototype implementation of the approach. We envision that, by applying our approach, reports tailored to user concerns reduce the effort to analyze performance evaluation results.
关注驱动的软件性能分析结果报告
报告性能分析结果的最先进方法依赖于提供系统性能洞察的图表,通常在仪表板中组织。洞察通常是数据驱动的,也就是说,不直接连接到导致用户执行性能工程活动的性能关注点,因此限制了所提供结果的可理解性。一个原因是数据没有进一步的解释。为了解决这个问题,我们提出了一种关注驱动的方法,用于报告绩效评估结果,该方法围绕由利益相关者陈述的绩效关注进行塑造,并由最先进的声明性性能工程规范捕获。从可用的性能分析开始,该方法自动生成自定义的性能报告,为关注点提供基于图表和自然语言的答案。在本文中,我们介绍了关注驱动性能分析报告的一般概念,并提出了该方法的第一个原型实现。我们设想,通过应用我们的方法,针对用户关注的报告可以减少分析性能评估结果的工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信