The fuzzy neural networks with ternary encoding

O. Semenova, A. Semenov, K. Koval, A. Rudyk, V. Chuhov
{"title":"The fuzzy neural networks with ternary encoding","authors":"O. Semenova, A. Semenov, K. Koval, A. Rudyk, V. Chuhov","doi":"10.1109/SIBCON.2013.6693591","DOIUrl":null,"url":null,"abstract":"When combining fuzzy logic and neural networks it is possible to get a hybrid system that can process uncertain values and can be trained. Fuzzy logic elements can be regarded as fuzzy-neural networks. In order to present a set of fuzzy values the ternary encoding is used. Three fuzzy neural networks on linear neurons are proposed. The first operates as a fuzzy logical minimum element, the second does as a fuzzy logical maximum element, the third - as a fuzzy logical complement element.","PeriodicalId":143296,"journal":{"name":"2013 International Siberian Conference on Control and Communications (SIBCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Siberian Conference on Control and Communications (SIBCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBCON.2013.6693591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When combining fuzzy logic and neural networks it is possible to get a hybrid system that can process uncertain values and can be trained. Fuzzy logic elements can be regarded as fuzzy-neural networks. In order to present a set of fuzzy values the ternary encoding is used. Three fuzzy neural networks on linear neurons are proposed. The first operates as a fuzzy logical minimum element, the second does as a fuzzy logical maximum element, the third - as a fuzzy logical complement element.
三进制编码的模糊神经网络
将模糊逻辑和神经网络相结合,可以得到一个既能处理不确定值又能训练的混合系统。模糊逻辑单元可以看作是模糊神经网络。为了表示一组模糊值,采用了三进制编码。提出了基于线性神经元的三种模糊神经网络。第一个作为模糊逻辑最小元素,第二个作为模糊逻辑最大元素,第三个作为模糊逻辑补充元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信