A hierarchy of length scales for weak solutions of the three-dimensional Navier-Stokes equations

J. Gibbon
{"title":"A hierarchy of length scales for weak solutions of the three-dimensional Navier-Stokes equations","authors":"J. Gibbon","doi":"10.4310/CMS.2012.V10.N1.A7","DOIUrl":null,"url":null,"abstract":"Moments of the vorticity are used to define and estimate a hierarchy of time-averaged inverse length scales for weak solutions of the three-dimensional, incompressible Navier-Stokes equations on a periodic box. The estimate for the smallest of these inverse scales coincides with the inverse Kolmogorov length but thereafter the exponents of the Reynolds number rise rapidly for correspondingly higher moments. The implications of these results for the computational resolution of small scale vortical structures are discussed.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/CMS.2012.V10.N1.A7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Moments of the vorticity are used to define and estimate a hierarchy of time-averaged inverse length scales for weak solutions of the three-dimensional, incompressible Navier-Stokes equations on a periodic box. The estimate for the smallest of these inverse scales coincides with the inverse Kolmogorov length but thereafter the exponents of the Reynolds number rise rapidly for correspondingly higher moments. The implications of these results for the computational resolution of small scale vortical structures are discussed.
三维Navier-Stokes方程弱解的长度尺度层次
利用涡量矩来定义和估计周期盒上三维不可压缩Navier-Stokes方程弱解的时间平均逆长度尺度层次。这些逆尺度中最小的估计与逆柯尔莫哥罗夫长度一致,但此后雷诺数指数在相应的高矩下迅速上升。讨论了这些结果对小尺度涡旋结构计算分辨率的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信