Estimation of Parameter Space Representation for Projection Type Iterative Learning Identification Method

F. Sakai
{"title":"Estimation of Parameter Space Representation for Projection Type Iterative Learning Identification Method","authors":"F. Sakai","doi":"10.5687/iscie.34.199","DOIUrl":null,"url":null,"abstract":"The projection type iterative learning identification method has several advantages such as: (i) no time-derivatives of input/output signals are required and (ii) it gives unbiased estimations. However, this identification method requires a parameterized model obtained by projecting a tracking error signal onto a finite-dimensional subspace, and the parameterized model must be estimated in advance. The model is called a parameter space representation in this paper. This paper presents an approach for estimating the parameter space representation required for the projection type iterative learning identification method. The proposed method is based on the projection of the estimated error signal onto the finite-dimensional signal subspace whose basis is determined by the closed-loop system with the estimated model. The benefits of the proposed method in comparison with existing method are illustrated with simulation studies.","PeriodicalId":403477,"journal":{"name":"Transactions of the Institute of Systems, Control and Information Engineers","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Systems, Control and Information Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5687/iscie.34.199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The projection type iterative learning identification method has several advantages such as: (i) no time-derivatives of input/output signals are required and (ii) it gives unbiased estimations. However, this identification method requires a parameterized model obtained by projecting a tracking error signal onto a finite-dimensional subspace, and the parameterized model must be estimated in advance. The model is called a parameter space representation in this paper. This paper presents an approach for estimating the parameter space representation required for the projection type iterative learning identification method. The proposed method is based on the projection of the estimated error signal onto the finite-dimensional signal subspace whose basis is determined by the closed-loop system with the estimated model. The benefits of the proposed method in comparison with existing method are illustrated with simulation studies.
投影型迭代学习识别方法的参数空间表示估计
投影型迭代学习识别方法具有以下几个优点:(1)不需要输入/输出信号的时间导数;(2)给出无偏估计。然而,这种识别方法需要将跟踪误差信号投影到有限维子空间中得到参数化模型,并且必须提前对参数化模型进行估计。本文将该模型称为参数空间表示。提出了一种估计投影式迭代学习识别方法所需参数空间表示的方法。该方法基于估计误差信号在有限维信号子空间上的投影,该子空间的基由具有估计模型的闭环系统确定。通过仿真研究说明了该方法与现有方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信