Theory and Performance of ML Decoding for Turbo Codes using Genetic Algorithm

Tsun-chih Hsueh, D. Shiu
{"title":"Theory and Performance of ML Decoding for Turbo Codes using Genetic Algorithm","authors":"Tsun-chih Hsueh, D. Shiu","doi":"10.1109/ISIT.2007.4557298","DOIUrl":null,"url":null,"abstract":"Although yielding the lowest error probability, ML decoding of turbo codes has been considered unrealistic so far because efficient ML decoders have not been discovered. In this paper, we propose the Genetic Decoding Algorithm (GDA) for turbo codes. GDA combines the principles of perturbed decoding and genetic algorithm. In GDA, chromosomes are random additive perturbation noises. A conventional turbo decoder is used to assign fitness values to the chromosomes in the population. After generations of evolution, good chromosomes that correspond to decoded codewords of very good likelihood emerge. GDA can be used as a practical decoder for turbo codes in certain contexts. It is also a natural multiple-output decoder. The most important aspect of GDA, in our opinion, is that one can utilize GDA to empirically determine a lower bound on the error probability with ML decoding. Our results show that, at a word error probability of 10-4, GDA achieves the performance of ML decoding. Using GDA, we establish that an ML decoder only slightly outperforms a MAP-based iterative decoder at this word error probability for the block size we used and the turbo code defined for WCDMA.","PeriodicalId":193467,"journal":{"name":"2007 IEEE International Symposium on Information Theory","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2007.4557298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Although yielding the lowest error probability, ML decoding of turbo codes has been considered unrealistic so far because efficient ML decoders have not been discovered. In this paper, we propose the Genetic Decoding Algorithm (GDA) for turbo codes. GDA combines the principles of perturbed decoding and genetic algorithm. In GDA, chromosomes are random additive perturbation noises. A conventional turbo decoder is used to assign fitness values to the chromosomes in the population. After generations of evolution, good chromosomes that correspond to decoded codewords of very good likelihood emerge. GDA can be used as a practical decoder for turbo codes in certain contexts. It is also a natural multiple-output decoder. The most important aspect of GDA, in our opinion, is that one can utilize GDA to empirically determine a lower bound on the error probability with ML decoding. Our results show that, at a word error probability of 10-4, GDA achieves the performance of ML decoding. Using GDA, we establish that an ML decoder only slightly outperforms a MAP-based iterative decoder at this word error probability for the block size we used and the turbo code defined for WCDMA.
基于遗传算法的Turbo码ML解码理论与性能研究
虽然产生最低的错误概率,但迄今为止,涡轮码的ML解码被认为是不现实的,因为有效的ML解码器尚未被发现。本文提出了turbo码的遗传解码算法(GDA)。GDA结合了扰动解码和遗传算法的原理。在GDA中,染色体是随机的加性扰动噪声。使用传统的涡轮解码器为种群中的染色体分配适应度值。经过几代人的进化,与极有可能被解码的码字相对应的良好染色体出现了。在某些情况下,GDA可以用作涡轮码的实用解码器。它也是一个天然的多输出解码器。在我们看来,GDA最重要的方面是,人们可以利用GDA来经验地确定ML解码错误概率的下界。结果表明,在单词错误概率为10-4的情况下,GDA达到了ML解码的性能。使用GDA,我们确定ML解码器在我们使用的块大小和为WCDMA定义的turbo码的单词错误概率上仅略优于基于map的迭代解码器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信