dCSR: A Memory-Efficient Sparse Matrix Representation for Parallel Neural Network Inference

E. Trommer, Bernd Waschneck, Akash Kumar
{"title":"dCSR: A Memory-Efficient Sparse Matrix Representation for Parallel Neural Network Inference","authors":"E. Trommer, Bernd Waschneck, Akash Kumar","doi":"10.1109/ICCAD51958.2021.9643506","DOIUrl":null,"url":null,"abstract":"Reducing the memory footprint of neural networks is a crucial prerequisite for deploying them in small and low-cost embedded devices. Network parameters can often be reduced significantly through pruning. We discuss how to best represent the indexing overhead of sparse networks for the coming generation of Single Instruction, Multiple Data (SIMD)-capable microcontrollers. From this, we develop Delta-Compressed Storage Row (dCSR), a storage format for sparse matrices that allows for both low overhead storage and fast inference on embedded systems with wide SIMD units. We demonstrate our method on an ARM Cortex-M55 MCU prototype with M-Profile Vector Extension (MVE). A comparison of memory consumption and throughput shows that our method achieves competitive compression ratios and increases throughput over dense methods by up to $2.9\\times$ for sparse matrix-vector multiplication (SpMV)-based kernels and $1.06\\times$ for sparse matrix-matrix multiplication (SpMM). This is accomplished through handling the generation of index information directly in the SIMD unit, leading to an increase in effective memory bandwidth.","PeriodicalId":370791,"journal":{"name":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD51958.2021.9643506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Reducing the memory footprint of neural networks is a crucial prerequisite for deploying them in small and low-cost embedded devices. Network parameters can often be reduced significantly through pruning. We discuss how to best represent the indexing overhead of sparse networks for the coming generation of Single Instruction, Multiple Data (SIMD)-capable microcontrollers. From this, we develop Delta-Compressed Storage Row (dCSR), a storage format for sparse matrices that allows for both low overhead storage and fast inference on embedded systems with wide SIMD units. We demonstrate our method on an ARM Cortex-M55 MCU prototype with M-Profile Vector Extension (MVE). A comparison of memory consumption and throughput shows that our method achieves competitive compression ratios and increases throughput over dense methods by up to $2.9\times$ for sparse matrix-vector multiplication (SpMV)-based kernels and $1.06\times$ for sparse matrix-matrix multiplication (SpMM). This is accomplished through handling the generation of index information directly in the SIMD unit, leading to an increase in effective memory bandwidth.
并行神经网络推理的高效记忆稀疏矩阵表示
减少神经网络的内存占用是将其部署在小型低成本嵌入式设备中的关键先决条件。网络参数通常可以通过修剪显著减少。我们讨论了如何最好地表示稀疏网络的索引开销为下一代的单指令,多数据(SIMD)能力的微控制器。由此,我们开发了delta压缩存储行(dCSR),这是一种用于稀疏矩阵的存储格式,允许在具有宽SIMD单元的嵌入式系统上进行低开销存储和快速推理。我们在ARM Cortex-M55单片机的M-Profile Vector Extension (MVE)原型上演示了我们的方法。内存消耗和吞吐量的比较表明,我们的方法实现了具有竞争力的压缩比,并且基于稀疏矩阵-向量乘法(SpMV)的内核的吞吐量比密集方法提高了2.9倍,基于稀疏矩阵-矩阵乘法(SpMM)的内核的吞吐量提高了1.06倍。这是通过直接在SIMD单元中处理索引信息的生成来实现的,从而增加了有效的内存带宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信