Towards exaggerated image stereotypes

Cheng Chen, F. Lauze, C. Igel, Aasa Feragen, M. Loog, M. Nielsen
{"title":"Towards exaggerated image stereotypes","authors":"Cheng Chen, F. Lauze, C. Igel, Aasa Feragen, M. Loog, M. Nielsen","doi":"10.1109/ACPR.2011.6166569","DOIUrl":null,"url":null,"abstract":"Given a training set of images and a binary classifier, we introduce the notion of an exaggerated image stereotype for some image class of interest, which emphasizes/exaggerates the characteristic patterns in an image and visualizes which visual information the classification relies on. This is useful for gaining insight into the classification mechanism. The exaggerated image stereotypes results in a proper trade-off between classification accuracy and likelihood of being generated from the class of interest. This is done by optimizing an objective function which consists of a discriminative term based on the classification result, and a generative term based on the assumption of the class distribution. We use this idea with Fisher's Linear Discriminant rule, and assume a multivariate normal distribution for samples within a class. The proposed framework has been applied on handwritten digit data, illustrating specific features differentiating digits. Then it is applied to a face dataset using Active Appearance Model (AAM), where male faces stereotypes are evolved from initial female faces.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"272 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Given a training set of images and a binary classifier, we introduce the notion of an exaggerated image stereotype for some image class of interest, which emphasizes/exaggerates the characteristic patterns in an image and visualizes which visual information the classification relies on. This is useful for gaining insight into the classification mechanism. The exaggerated image stereotypes results in a proper trade-off between classification accuracy and likelihood of being generated from the class of interest. This is done by optimizing an objective function which consists of a discriminative term based on the classification result, and a generative term based on the assumption of the class distribution. We use this idea with Fisher's Linear Discriminant rule, and assume a multivariate normal distribution for samples within a class. The proposed framework has been applied on handwritten digit data, illustrating specific features differentiating digits. Then it is applied to a face dataset using Active Appearance Model (AAM), where male faces stereotypes are evolved from initial female faces.
走向夸张的形象刻板印象
给定一个图像训练集和一个二值分类器,我们为一些感兴趣的图像类别引入了夸张图像刻板印象的概念,它强调/夸大图像中的特征模式,并可视化分类所依赖的视觉信息。这对于深入了解分类机制非常有用。夸张的图像刻板印象导致分类准确性和从感兴趣的类生成的可能性之间的适当权衡。这是通过优化目标函数来实现的,该目标函数由基于分类结果的判别项和基于类分布假设的生成项组成。我们将这个想法与费雪的线性判别规则一起使用,并假设一个类内样本的多元正态分布。该框架已应用于手写数字数据,说明了区分数字的具体特征。然后使用主动外观模型(AAM)将其应用于人脸数据集,其中男性面孔的刻板印象是从最初的女性面孔演变而来的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信