On the Effects of Pseudo-Codewords on Independent Rayleigh Flat-Fading Channels

E. Rosnes
{"title":"On the Effects of Pseudo-Codewords on Independent Rayleigh Flat-Fading Channels","authors":"E. Rosnes","doi":"10.1109/ITWITWN.2007.4318057","DOIUrl":null,"url":null,"abstract":"In this work, we consider the pairwise error probability (PEP) of a linear programming (LP) decoder for a general binary linear code as formulated by Feldman et al. (IEEE Trans. Inform. Theory, Mar. 2005) on an independent (or memoryless) Rayleigh flat-fading channel with coherent detection and perfect channel state information (CSI) at the receiver. Let H be a parity-check matrix of a binary linear code and consider LP decoding based on H. The output of the LP decoder is always a pseudo-codeword. We will show that the PEP of decoding to a pseudo-codeword omega when the all-zero codeword is transmitted on an independent Rayleigh flat-fading channel with coherent detection and perfect CSI at the receiver, behaves asymptotically as K(omega)ldr(Es/NO)-chi(omega), where chi(omega) is the support set of omega, i.e., the set of non-zero coordinates, Es/NO is the average signal-to-noise ratio (SNR), and K(omega) is a constant independent of the SNR. Thus, the asymptotic decay rate of the error probability with the average SNR is determined by the size of the smallest non-empty stopping set in the Tanner graph of H.","PeriodicalId":257392,"journal":{"name":"2007 IEEE Information Theory Workshop on Information Theory for Wireless Networks","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Information Theory Workshop on Information Theory for Wireless Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITWITWN.2007.4318057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we consider the pairwise error probability (PEP) of a linear programming (LP) decoder for a general binary linear code as formulated by Feldman et al. (IEEE Trans. Inform. Theory, Mar. 2005) on an independent (or memoryless) Rayleigh flat-fading channel with coherent detection and perfect channel state information (CSI) at the receiver. Let H be a parity-check matrix of a binary linear code and consider LP decoding based on H. The output of the LP decoder is always a pseudo-codeword. We will show that the PEP of decoding to a pseudo-codeword omega when the all-zero codeword is transmitted on an independent Rayleigh flat-fading channel with coherent detection and perfect CSI at the receiver, behaves asymptotically as K(omega)ldr(Es/NO)-chi(omega), where chi(omega) is the support set of omega, i.e., the set of non-zero coordinates, Es/NO is the average signal-to-noise ratio (SNR), and K(omega) is a constant independent of the SNR. Thus, the asymptotic decay rate of the error probability with the average SNR is determined by the size of the smallest non-empty stopping set in the Tanner graph of H.
伪码字对独立瑞利平衰落信道的影响
在这项工作中,我们考虑了线性规划(LP)解码器对一般二进制线性码的两两错误概率(PEP),如Feldman等人(IEEE Trans。通知。理论,2005年3月)的独立(或无记忆)瑞利平衰落信道与相干检测和完美的信道状态信息(CSI)在接收机。设H为二进制线性码的奇偶校验矩阵,并考虑基于H的LP译码,LP译码器的输出总是一个伪码字。我们将证明,当全零码字在接收端具有相干检测和完美CSI的独立瑞利平衰落信道上传输时,解码到伪码字omega的PEP渐近表现为K(omega)ldr(Es/NO)-chi(omega),其中chi(omega)为omega的支持集,即非零坐标集,Es/NO为平均信噪比(SNR), K(omega)是与信噪比无关的常数。因此,误差概率随平均信噪比的渐近衰减率由H的Tanner图中最小的非空停止集的大小决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信