Improving the Accuracy of Arctan for Face Detection

Youngsoo Kim, Hossein Shahdoost, Shrikant S. Jadhav, C. Gloster
{"title":"Improving the Accuracy of Arctan for Face Detection","authors":"Youngsoo Kim, Hossein Shahdoost, Shrikant S. Jadhav, C. Gloster","doi":"10.1109/FCCM.2017.48","DOIUrl":null,"url":null,"abstract":"Significant barriers to real time face detection have been the complexity of computation kernels, minimal costand superior accuracy requirements for both software and hardware implementation based on traditional high performance computing. It is desirable to develop variable precision face detection block for high dynamic range applications including night vision and infrared face detection applications. This paper developed an Arctan fucntion for face detection which supports input ranges upto 360 degrees for Histogram of Oriented Graph. Our implementation takes advantage of mathematical identities for the pedestrian HOG computation. We compare our HOG block design to fixed point implementations and found that using floating point HOG is not be computationally expensive and can accelerate face detection process.","PeriodicalId":124631,"journal":{"name":"2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2017.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Significant barriers to real time face detection have been the complexity of computation kernels, minimal costand superior accuracy requirements for both software and hardware implementation based on traditional high performance computing. It is desirable to develop variable precision face detection block for high dynamic range applications including night vision and infrared face detection applications. This paper developed an Arctan fucntion for face detection which supports input ranges upto 360 degrees for Histogram of Oriented Graph. Our implementation takes advantage of mathematical identities for the pedestrian HOG computation. We compare our HOG block design to fixed point implementations and found that using floating point HOG is not be computationally expensive and can accelerate face detection process.
提高Arctan在人脸检测中的准确性
实时人脸检测的主要障碍是计算核的复杂性,基于传统高性能计算的软件和硬件实现的最小成本和卓越精度要求。针对夜视和红外人脸检测等高动态范围应用,需要开发可变精度人脸检测块。本文开发了一种用于人脸检测的Arctan函数,该函数支持360度方向直方图的输入范围。我们的实现利用了行人HOG计算的数学恒等式。我们将我们的HOG块设计与定点实现进行了比较,发现使用浮点HOG在计算上并不昂贵,并且可以加速人脸检测过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信