A Lower Bound for Sampling Disjoint Sets

Thomas Watson
{"title":"A Lower Bound for Sampling Disjoint Sets","authors":"Thomas Watson","doi":"10.1145/3404858","DOIUrl":null,"url":null,"abstract":"Suppose Alice and Bob each start with private randomness and no other input, and they wish to engage in a protocol in which Alice ends up with a set x⊆ [n] and Bob ends up with a set y⊆ [n], such that (x,y) is uniformly distributed over all pairs of disjoint sets. We prove that for some constant β < 1, this requires Ω (n) communication even to get within statistical distance 1− βn of the target distribution. Previously, Ambainis, Schulman, Ta-Shma, Vazirani, and Wigderson (FOCS 1998) proved that Ω (√n) communication is required to get within some constant statistical distance ɛ > 0 of the uniform distribution over all pairs of disjoint sets of size √n.","PeriodicalId":198744,"journal":{"name":"ACM Transactions on Computation Theory (TOCT)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory (TOCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3404858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Suppose Alice and Bob each start with private randomness and no other input, and they wish to engage in a protocol in which Alice ends up with a set x⊆ [n] and Bob ends up with a set y⊆ [n], such that (x,y) is uniformly distributed over all pairs of disjoint sets. We prove that for some constant β < 1, this requires Ω (n) communication even to get within statistical distance 1− βn of the target distribution. Previously, Ambainis, Schulman, Ta-Shma, Vazirani, and Wigderson (FOCS 1998) proved that Ω (√n) communication is required to get within some constant statistical distance ɛ > 0 of the uniform distribution over all pairs of disjoint sets of size √n.
抽样不相交集的下界
假设Alice和Bob都从私有随机性出发,没有其他输入,并且他们希望参与一个协议,其中Alice最终得到一个x倍于[n], Bob最终得到一个y倍于[n]的集合,使得(x,y)均匀分布在所有不相交的集合对上。我们证明了对于某些常数β < 1,这需要Ω (n)通信,即使在目标分布的统计距离1−βn内。此前,Ambainis, Schulman, Ta-Shma, Vazirani, and Wigderson (FOCS 1998)证明了Ω(√n)通信需要在大小为√n的所有对不相交集的均匀分布的某一恒定统计距离内得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信