Scalable multiple GPU architecture for super multi-view synthesis using MVD

Byoungkyun Kim, Byeongho Choi, Youngbae Hwang
{"title":"Scalable multiple GPU architecture for super multi-view synthesis using MVD","authors":"Byoungkyun Kim, Byeongho Choi, Youngbae Hwang","doi":"10.1109/APSIPA.2016.7820787","DOIUrl":null,"url":null,"abstract":"This paper presents a scalable multiple GPU architecture for super multi-view (SMV) synthesis using the multi-view video plus depth (MVD) data. SMV synthesis is essential to generate 3D contents for the SMV 3D display with hundred views. SMV 3D display, recently released to support 108 viewpoints, shows the multiplexed result of small viewing interval. Hence, we should synthesize the intermediate views over a hundred for each pair of two cameras in multi-camera system. View synthesis of more than hundred high resolution images, however, needs massive data processing, which is linearly increased in proportion to the number of synthesized views. In this paper, we propose a real-time SMV synthesis method using multiple GPU. The scalability of GPU can be utilized to reduce the processing time of view synthesis without any changes of the kernel function. We evaluate the proposed method for synthesizing 180 intermediate views from 18 input HD images according to the number of GPUs. We show that 180 intermediate views can be synthesized in real-time using 4 GPUs.","PeriodicalId":409448,"journal":{"name":"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)","volume":"247 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2016.7820787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a scalable multiple GPU architecture for super multi-view (SMV) synthesis using the multi-view video plus depth (MVD) data. SMV synthesis is essential to generate 3D contents for the SMV 3D display with hundred views. SMV 3D display, recently released to support 108 viewpoints, shows the multiplexed result of small viewing interval. Hence, we should synthesize the intermediate views over a hundred for each pair of two cameras in multi-camera system. View synthesis of more than hundred high resolution images, however, needs massive data processing, which is linearly increased in proportion to the number of synthesized views. In this paper, we propose a real-time SMV synthesis method using multiple GPU. The scalability of GPU can be utilized to reduce the processing time of view synthesis without any changes of the kernel function. We evaluate the proposed method for synthesizing 180 intermediate views from 18 input HD images according to the number of GPUs. We show that 180 intermediate views can be synthesized in real-time using 4 GPUs.
使用MVD进行超级多视图合成的可扩展多GPU架构
提出了一种基于多视点视频加深度(MVD)数据的可扩展多GPU超多视点(SMV)合成体系结构。SMV合成对于生成具有百视图的SMV 3D显示的3D内容至关重要。最近发布的SMV 3D显示器支持108视点,显示了小观看间隔的多路复用结果。因此,在多摄像机系统中,我们应该对每一对双摄像机的中间视图进行一百多个综合。然而,一百多张高分辨率图像的视图合成需要大量的数据处理,这些数据处理与合成视图的数量成线性比例增加。本文提出了一种基于多GPU的实时SMV合成方法。利用GPU的可扩展性,可以在不改变内核函数的情况下减少视图合成的处理时间。我们根据图形处理器的数量对所提出的方法进行了评估,该方法可以从18张输入的高清图像中合成180个中间视图。我们证明了使用4个gpu可以实时合成180个中间视图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信