Cristiano Rodrigues, Ivo Marques, S. Pinto, T. Gomes, A. Tavares
{"title":"Towards a Heterogeneous Fault-Tolerance Architecture based on Arm and RISC-V Processors","authors":"Cristiano Rodrigues, Ivo Marques, S. Pinto, T. Gomes, A. Tavares","doi":"10.1109/IECON.2019.8926844","DOIUrl":null,"url":null,"abstract":"Computer systems are permanently present in our daily basis in a wide range of applications. In systems with mixed-criticality requirements, e.g., autonomous driving or aerospace applications, devices are expected to continue operating properly even in the event of a failure. An approach to improve the robustness of the device's operation lies in enabling fault-tolerant mechanisms during the system's design. This article proposes Lock-V, a heterogeneous architecture that explores a Dual-Core Lockstep (DCLS) fault-tolerance technique in two different processing units: a hard-core Arm Cortex-A9 and a soft-core RISC-V-based processor. It resorts a System-on-Chip (SoC) solution with software programmability (available trough the hard-core Arm Cortex-A9) and field-programmable gate array (FPGA) technology, taking advantages from the latter to support the deployment of the RISC-V soft-core along with dedicated hardware accelerators towards the realization of the DCLS.","PeriodicalId":187719,"journal":{"name":"IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2019.8926844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Computer systems are permanently present in our daily basis in a wide range of applications. In systems with mixed-criticality requirements, e.g., autonomous driving or aerospace applications, devices are expected to continue operating properly even in the event of a failure. An approach to improve the robustness of the device's operation lies in enabling fault-tolerant mechanisms during the system's design. This article proposes Lock-V, a heterogeneous architecture that explores a Dual-Core Lockstep (DCLS) fault-tolerance technique in two different processing units: a hard-core Arm Cortex-A9 and a soft-core RISC-V-based processor. It resorts a System-on-Chip (SoC) solution with software programmability (available trough the hard-core Arm Cortex-A9) and field-programmable gate array (FPGA) technology, taking advantages from the latter to support the deployment of the RISC-V soft-core along with dedicated hardware accelerators towards the realization of the DCLS.