Design of Machine Learning-Based Malware Detection Techniques in Smartphone Environment

P. Baviskar, Guddi Singh, V. Patil
{"title":"Design of Machine Learning-Based Malware Detection Techniques in Smartphone Environment","authors":"P. Baviskar, Guddi Singh, V. Patil","doi":"10.1109/ICONAT57137.2023.10080819","DOIUrl":null,"url":null,"abstract":"Hackers are spreading malware by using Android mobile devices and apps. Malware detection in Android apps is a topic of study. How can we use ML to identify harmful software in Android-based gadgets and programs? If Android apps could detect malware in real-time, it may better protect users from it. To put it simply, it will assist Android users to avoid downloading harmful apps. To aid in supervised learning, the suggested technique gathers features from APK files. Multinomial Naive Bayes, Random Forest, and Support Vector Machines are only a few of the prediction models available (SVM). To counteract harmful malware, Android devices and apps may rely on a foundation created by ML methods. There is more backing for the solution proposed. More and more malware is being discovered, and hence more training data is being collected. When more data is used for training, accuracy improves. Small tweaks might make it possible to live-track Android apps on rival devices.","PeriodicalId":250587,"journal":{"name":"2023 International Conference for Advancement in Technology (ICONAT)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference for Advancement in Technology (ICONAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONAT57137.2023.10080819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hackers are spreading malware by using Android mobile devices and apps. Malware detection in Android apps is a topic of study. How can we use ML to identify harmful software in Android-based gadgets and programs? If Android apps could detect malware in real-time, it may better protect users from it. To put it simply, it will assist Android users to avoid downloading harmful apps. To aid in supervised learning, the suggested technique gathers features from APK files. Multinomial Naive Bayes, Random Forest, and Support Vector Machines are only a few of the prediction models available (SVM). To counteract harmful malware, Android devices and apps may rely on a foundation created by ML methods. There is more backing for the solution proposed. More and more malware is being discovered, and hence more training data is being collected. When more data is used for training, accuracy improves. Small tweaks might make it possible to live-track Android apps on rival devices.
智能手机环境下基于机器学习的恶意软件检测技术设计
黑客利用安卓移动设备和应用程序传播恶意软件。Android应用程序中的恶意软件检测是一个研究课题。我们如何使用机器学习来识别基于android的设备和程序中的有害软件?如果安卓应用程序能够实时检测恶意软件,它可能会更好地保护用户免受恶意软件的侵害。简单地说,它将帮助Android用户避免下载有害的应用程序。为了帮助监督学习,建议的技术从APK文件中收集特征。多项朴素贝叶斯、随机森林和支持向量机只是可用的几种预测模型(SVM)。为了对抗有害的恶意软件,Android设备和应用程序可能依赖于ML方法创建的基础。提出的解决方案得到了更多的支持。越来越多的恶意软件被发现,因此越来越多的训练数据被收集。当更多的数据用于训练时,准确性就会提高。稍作调整或许就能在竞争对手的设备上实时跟踪安卓应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信