Finding multi-objective paths in stochastic networks: a simulation-based genetic algorithm approach

Z. Ji, A. Chen, K. Subprasom
{"title":"Finding multi-objective paths in stochastic networks: a simulation-based genetic algorithm approach","authors":"Z. Ji, A. Chen, K. Subprasom","doi":"10.1109/CEC.2004.1330854","DOIUrl":null,"url":null,"abstract":"Path finding is a fundamental research topic in transportation due to its wide applications in transportation planning and intelligent transportation system (ITS). In transportation, the path finding problem is usually defined as the shortest path (SP) problem in terms of distance, time, cost, or a combination of criteria under a deterministic environment. However, in real life situations, the environment is often uncertain. In this paper, we develop a simulation-based genetic algorithm to find multi-objective paths in stochastic networks. Numerical experiments are presented to demonstrate the algorithm feasibility.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1330854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Path finding is a fundamental research topic in transportation due to its wide applications in transportation planning and intelligent transportation system (ITS). In transportation, the path finding problem is usually defined as the shortest path (SP) problem in terms of distance, time, cost, or a combination of criteria under a deterministic environment. However, in real life situations, the environment is often uncertain. In this paper, we develop a simulation-based genetic algorithm to find multi-objective paths in stochastic networks. Numerical experiments are presented to demonstrate the algorithm feasibility.
随机网络中寻找多目标路径:一种基于模拟的遗传算法方法
寻径是交通领域的一个基础性研究课题,在交通规划和智能交通系统中有着广泛的应用。在交通运输中,寻路问题通常被定义为在确定性环境下,根据距离、时间、成本或多种标准组合的最短路径(SP)问题。然而,在现实生活中,环境往往是不确定的。在本文中,我们开发了一种基于模拟的遗传算法来寻找随机网络中的多目标路径。通过数值实验验证了该算法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信