K. Radzikowski, Mateusz Forc, Le Wang, O. Yoshie, R. Nowak
{"title":"Accent neutralization for speech recognition of non-native speakers","authors":"K. Radzikowski, Mateusz Forc, Le Wang, O. Yoshie, R. Nowak","doi":"10.1145/3366030.3366083","DOIUrl":null,"url":null,"abstract":"These days, automatic speech recognition (ASR) systems achieve higher and higher accuracy rates. The score drops significantly, in case when the ASR system is being used with a non-native speaker of the language to be recognized. The main reason is specific pronunciation and accent features. A limited volume of labeled non-native speech datasets makes it difficult to train new ASR systems for non-native speakers. In our research, we tried tackling the problem and its influence on the accuracy of ASR systems, using the style transfer methodology. We designed a pipeline for modifying the speech of a non-native speaker, so that it resembles the native speech to a higher extent. Our methodology can be used as a wrapper for any existing ASR system, which reduces the necessity of training new algorithms for non-native speech. The modification can be thus performed before passing the data forward to the speech recognition system itself.","PeriodicalId":446280,"journal":{"name":"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366030.3366083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
These days, automatic speech recognition (ASR) systems achieve higher and higher accuracy rates. The score drops significantly, in case when the ASR system is being used with a non-native speaker of the language to be recognized. The main reason is specific pronunciation and accent features. A limited volume of labeled non-native speech datasets makes it difficult to train new ASR systems for non-native speakers. In our research, we tried tackling the problem and its influence on the accuracy of ASR systems, using the style transfer methodology. We designed a pipeline for modifying the speech of a non-native speaker, so that it resembles the native speech to a higher extent. Our methodology can be used as a wrapper for any existing ASR system, which reduces the necessity of training new algorithms for non-native speech. The modification can be thus performed before passing the data forward to the speech recognition system itself.