Masked Data Analysis based on the Generalized Linear Model

Hasan Misaii, F. Haghighi, S. E. Mahabadi
{"title":"Masked Data Analysis based on the Generalized Linear Model","authors":"Hasan Misaii, F. Haghighi, S. E. Mahabadi","doi":"10.30699/IJRRS.3.2.1","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the estimation problem in the presence of masked data for series systems. A missing indicator is proposed to describe masked set of each failure time.Moreover, a Generalized Linear model (GLM) with appropriate link function is used to model masked indicator in order to involve masked information into likelihood function. Both maximum likelihood and Bayesian methods were considered.The likelihood function with both missing at random (MAR) and missing not at random (MNAR) mechanismsare derived.Using an auxiliary variable, a Bayesian approach is expanded to obtain posterior estimations of the model parameters.The proposed methods have been illustrated through a real example.","PeriodicalId":395350,"journal":{"name":"International Journal of Reliability, Risk and Safety: Theory and Application","volume":"257 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliability, Risk and Safety: Theory and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30699/IJRRS.3.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the estimation problem in the presence of masked data for series systems. A missing indicator is proposed to describe masked set of each failure time.Moreover, a Generalized Linear model (GLM) with appropriate link function is used to model masked indicator in order to involve masked information into likelihood function. Both maximum likelihood and Bayesian methods were considered.The likelihood function with both missing at random (MAR) and missing not at random (MNAR) mechanismsare derived.Using an auxiliary variable, a Bayesian approach is expanded to obtain posterior estimations of the model parameters.The proposed methods have been illustrated through a real example.
基于广义线性模型的掩模数据分析
本文研究了序列系统中存在屏蔽数据时的估计问题。提出了一个缺失指标来描述每个故障时间的屏蔽集。此外,利用具有适当链接函数的广义线性模型(GLM)对屏蔽指标进行建模,将屏蔽信息纳入似然函数。最大似然方法和贝叶斯方法都被考虑。推导了随机缺失(MAR)和非随机缺失(MNAR)机制的似然函数。利用辅助变量,扩展贝叶斯方法以获得模型参数的后验估计。通过一个实例说明了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信