Improving Water Consumption Estimates from a Bottle-Attachable Sensor Using Heuristic Fusion

Henry K. Griffith, S. Biswas
{"title":"Improving Water Consumption Estimates from a Bottle-Attachable Sensor Using Heuristic Fusion","authors":"Henry K. Griffith, S. Biswas","doi":"10.1109/WoWMoM.2019.8792985","DOIUrl":null,"url":null,"abstract":"This paper demonstrates a strategy for improving aggregate (i.e.: multiple drink) water consumption estimates obtained from a bottle-attachable IMU sensor through heuristic fusion. Aggregate consumption is estimated based upon residual container volume using a Gaussian process regression model trained on over 1,500 drinks. The model estimates the fill level of the bottle using hand-engineered features describing the estimated inclination during drinking. Fill level estimates are fused with an empirically parameterized heuristic consumption model. For initial proof-of-concept, fusion is performed using complementary and Kalman filtering. Both techniques are evaluated for 32 dedicated testing experiments containing 12 drinks each. Root mean square fill ratio estimation errors are reduced by 17.3% and 39.6% versus raw sensor estimates using the complementary and Kalman fusion frameworks, respectively.","PeriodicalId":372377,"journal":{"name":"2019 IEEE 20th International Symposium on \"A World of Wireless, Mobile and Multimedia Networks\" (WoWMoM)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 20th International Symposium on \"A World of Wireless, Mobile and Multimedia Networks\" (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM.2019.8792985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper demonstrates a strategy for improving aggregate (i.e.: multiple drink) water consumption estimates obtained from a bottle-attachable IMU sensor through heuristic fusion. Aggregate consumption is estimated based upon residual container volume using a Gaussian process regression model trained on over 1,500 drinks. The model estimates the fill level of the bottle using hand-engineered features describing the estimated inclination during drinking. Fill level estimates are fused with an empirically parameterized heuristic consumption model. For initial proof-of-concept, fusion is performed using complementary and Kalman filtering. Both techniques are evaluated for 32 dedicated testing experiments containing 12 drinks each. Root mean square fill ratio estimation errors are reduced by 17.3% and 39.6% versus raw sensor estimates using the complementary and Kalman fusion frameworks, respectively.
利用启发式融合改进可装瓶传感器的用水量估算
本文展示了一种通过启发式融合改进从可贴装瓶的IMU传感器获得的总(即多饮)用水量估计的策略。总消费量是基于剩余容器体积估计使用高斯过程回归模型训练超过1500饮料。该模型使用描述饮用过程中估计的倾斜度的手工设计特征来估计瓶子的填充水平。填充水平估计与经验参数化的启发式消耗模型相融合。对于最初的概念验证,使用互补和卡尔曼滤波进行融合。这两种技术都进行了32个专门的测试实验,每个实验包含12种饮料。使用互补和卡尔曼融合框架,与原始传感器估计相比,均方根填充率估计误差分别降低了17.3%和39.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信