SoftSkip

Dulanga Weerakoon, Vigneshwaran Subbaraju, Tuan Tran, Archan Misra
{"title":"SoftSkip","authors":"Dulanga Weerakoon, Vigneshwaran Subbaraju, Tuan Tran, Archan Misra","doi":"10.1145/3503161.3548432","DOIUrl":null,"url":null,"abstract":"Supporting real-time referring expression comprehension (REC) on pervasive devices is an important capability for human-AI collaborative tasks. Model pruning techniques, applied to DNN models, can enable real-time execution even on resource-constrained devices. However, existing pruning strategies are designed principally for uni-modal applications, and suffer a significant loss of accuracy when applied to REC tasks that require fusion of textual and visual inputs. We thus present a multi-modal pruning model, LGMDP, which uses language as a pivot to dynamically and judiciously select the relevant computational blocks that need to be executed. LGMDP also introduces a new SoftSkip mechanism, whereby 'skipped' visual scales are not completely eliminated but approximated with minimal additional computation. Experimental evaluation, using 3 benchmark REC datasets and an embedded device implementation, shows that LGMDP can achieve 33% latency savings, with an accuracy loss 0.5% - 2%.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3548432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Supporting real-time referring expression comprehension (REC) on pervasive devices is an important capability for human-AI collaborative tasks. Model pruning techniques, applied to DNN models, can enable real-time execution even on resource-constrained devices. However, existing pruning strategies are designed principally for uni-modal applications, and suffer a significant loss of accuracy when applied to REC tasks that require fusion of textual and visual inputs. We thus present a multi-modal pruning model, LGMDP, which uses language as a pivot to dynamically and judiciously select the relevant computational blocks that need to be executed. LGMDP also introduces a new SoftSkip mechanism, whereby 'skipped' visual scales are not completely eliminated but approximated with minimal additional computation. Experimental evaluation, using 3 benchmark REC datasets and an embedded device implementation, shows that LGMDP can achieve 33% latency savings, with an accuracy loss 0.5% - 2%.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信