Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals

J. Dunn
{"title":"Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals","authors":"J. Dunn","doi":"10.1137/0317015","DOIUrl":null,"url":null,"abstract":"Two conditional gradient algorithms are considered for the problem min ¿F, with ¿ a bounded convex subset of a Banach space. Neither method requires line search; one method needs no Lipschitz constants. Convergence rate estimates are similar in the two cases, and depend critically on the continuity properties of a set valued operator T whose fixed points, ¿, are the extremals of F in ¿. The continuity properties of T at ¿ are determined by the way a(¿) = inf{¿= |y¿¿,||;y-¿||>¿} grows with increasing ¿. It is shown that for convex F and Lipschitz continuous F', the algorithms converge like o(1/n), geometrically, or in finitely many steps, according to whether a(¿)>0 for ¿>0, or a(¿)>A¿2 with A>0, or a(¿)>A¿ with A>0. These three abstract conditions are closely related to established notions of nonsingularity for an important class of optimal control problems with bounded control inputs. The first con-- dition is satisfied (in L1)when meas {t|s(t)=0} =0, where s(¿) is the switching function associated with the extremal control ¿(¿); the second condition is satisfied when s(¿) has finitely many zeros, all simple (typical of the bang-bang extremal); the third condition is satisfied when s(¿) is bounded away from zero. Strong or uniform convexity assumptions are not invoked in the main: convergence theorems. One of the theorems can be extended to a large subclass of quasiconvex functionals F.","PeriodicalId":375119,"journal":{"name":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1979-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"102","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0317015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 102

Abstract

Two conditional gradient algorithms are considered for the problem min ¿F, with ¿ a bounded convex subset of a Banach space. Neither method requires line search; one method needs no Lipschitz constants. Convergence rate estimates are similar in the two cases, and depend critically on the continuity properties of a set valued operator T whose fixed points, ¿, are the extremals of F in ¿. The continuity properties of T at ¿ are determined by the way a(¿) = inf{¿= |y¿¿,||;y-¿||>¿} grows with increasing ¿. It is shown that for convex F and Lipschitz continuous F', the algorithms converge like o(1/n), geometrically, or in finitely many steps, according to whether a(¿)>0 for ¿>0, or a(¿)>A¿2 with A>0, or a(¿)>A¿ with A>0. These three abstract conditions are closely related to established notions of nonsingularity for an important class of optimal control problems with bounded control inputs. The first con-- dition is satisfied (in L1)when meas {t|s(t)=0} =0, where s(¿) is the switching function associated with the extremal control ¿(¿); the second condition is satisfied when s(¿) has finitely many zeros, all simple (typical of the bang-bang extremal); the third condition is satisfied when s(¿) is bounded away from zero. Strong or uniform convexity assumptions are not invoked in the main: convergence theorems. One of the theorems can be extended to a large subclass of quasiconvex functionals F.
奇异和非奇异极值附近条件梯度算法的收敛速度
考虑了两种条件梯度算法的问题min¿F,具有Banach空间的有界凸子集。这两种方法都不需要行搜索;一种方法不需要Lipschitz常数。在这两种情况下,收敛速率估计是相似的,并且主要依赖于集合值算子T的连续性,其不动点是F的极值。T at¿的连续性由a(¿)= inf{¿= |y´´,||;y-¿||>¿}随¿的增加而增加的方式决定。结果表明,对于凸F和Lipschitz连续F',根据a(¿)>0时a(¿)>0,或a(¿)> a¿2时a >0,或a(¿)> a¿时a >0,算法收敛于o(1/n),几何收敛,或在有限多步收敛。这三个抽象条件与一类重要的具有有限控制输入的最优控制问题的非奇异性概念密切相关。当meas {t|s(t)=0} =0时满足第一个条件(在L1中),其中s(¿)为与极值控制¿(¿)相关联的开关函数;第二个条件满足于s(¿)有有限多个零,且都是简单的(典型的砰砰极值);当s(¿)离零有界时,满足第三个条件。强凸性或一致凸性假设在主要的收敛定理中不被调用。其中一个定理可以推广到拟凸泛函的一个大子类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信