Filtering using a tree-based estimator

B. Stenger, A. Thayananthan, P. Torr, R. Cipolla
{"title":"Filtering using a tree-based estimator","authors":"B. Stenger, A. Thayananthan, P. Torr, R. Cipolla","doi":"10.1109/ICCV.2003.1238467","DOIUrl":null,"url":null,"abstract":"Within this paper a new framework for Bayesian tracking is presented, which approximates the posterior distribution at multiple resolutions. We propose a tree-based representation of the distribution, where the leaves define a partition of the state space with piecewise constant density. The advantage of this representation is that regions with low probability mass can be rapidly discarded in a hierarchical search, and the distribution can be approximated to arbitrary precision. We demonstrate the effectiveness of the technique by using it for tracking 3D articulated and nonrigid motion in front of cluttered background. More specifically, we are interested in estimating the joint angles, position and orientation of a 3D hand model in order to drive an avatar.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"167","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 167

Abstract

Within this paper a new framework for Bayesian tracking is presented, which approximates the posterior distribution at multiple resolutions. We propose a tree-based representation of the distribution, where the leaves define a partition of the state space with piecewise constant density. The advantage of this representation is that regions with low probability mass can be rapidly discarded in a hierarchical search, and the distribution can be approximated to arbitrary precision. We demonstrate the effectiveness of the technique by using it for tracking 3D articulated and nonrigid motion in front of cluttered background. More specifically, we are interested in estimating the joint angles, position and orientation of a 3D hand model in order to drive an avatar.
使用基于树的估计器进行过滤
本文提出了一种新的贝叶斯跟踪框架,它近似于多分辨率下的后验分布。我们提出了一种基于树的分布表示,其中叶子定义了状态空间的分段恒定密度分区。这种表示的优点是在分层搜索中可以快速丢弃质量概率较低的区域,并且分布可以近似到任意精度。我们通过使用它来跟踪杂乱背景前的3D关节和非刚性运动来证明该技术的有效性。更具体地说,我们感兴趣的是估计关节角度,3D手模型的位置和方向,以驱动化身。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信