Multiple sensor fusion for mobile robot localization and navigation using the Extended Kalman Filter

Ehab I. Al Khatib, M. Jaradat, M. Abdel-Hafez, Milad Roigari
{"title":"Multiple sensor fusion for mobile robot localization and navigation using the Extended Kalman Filter","authors":"Ehab I. Al Khatib, M. Jaradat, M. Abdel-Hafez, Milad Roigari","doi":"10.1109/ISMA.2015.7373480","DOIUrl":null,"url":null,"abstract":"Navigation is an important topic in mobile robots. In this paper, an Extended Kalman Filter (EKF) is used to localize a mobile robot equipped with an encoder, compass, IMU and GPS utilizing three different approaches. Subsequently, an input output state feedback linearization (I-O SFL) method is used to control the robot along the desired robot trajectory. The presented algorithms are verified when the robot was steered along two different track shapes. Additionally, the performance of the method is demonstrated when a fault was simulated on the sensors.","PeriodicalId":222454,"journal":{"name":"2015 10th International Symposium on Mechatronics and its Applications (ISMA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Symposium on Mechatronics and its Applications (ISMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMA.2015.7373480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Navigation is an important topic in mobile robots. In this paper, an Extended Kalman Filter (EKF) is used to localize a mobile robot equipped with an encoder, compass, IMU and GPS utilizing three different approaches. Subsequently, an input output state feedback linearization (I-O SFL) method is used to control the robot along the desired robot trajectory. The presented algorithms are verified when the robot was steered along two different track shapes. Additionally, the performance of the method is demonstrated when a fault was simulated on the sensors.
基于扩展卡尔曼滤波的多传感器融合移动机器人定位与导航
导航是移动机器人研究的一个重要课题。本文采用扩展卡尔曼滤波器(EKF),利用三种不同的方法对配备编码器、指南针、IMU和GPS的移动机器人进行定位。然后,采用输入-输出状态反馈线性化(I-O SFL)方法控制机器人沿期望轨迹运动。在两种不同轨道形状的驱动下,对算法进行了验证。通过对传感器故障的仿真,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信