Swarming behaviour of salps algorithm for predicting chemical compound activities

A. Hussien, A. Hassanien, E. H. Houssein
{"title":"Swarming behaviour of salps algorithm for predicting chemical compound activities","authors":"A. Hussien, A. Hassanien, E. H. Houssein","doi":"10.1109/INTELCIS.2017.8260072","DOIUrl":null,"url":null,"abstract":"The increasing size of chemical search space of chemical compound databases and importance of similarity measurements to drug discovery are main factors in chem.-informatics research. This paper introduces a swarming behavior of salps algorithm for predicting chemical compound activities. The salp optimization algorithm is proposed for chemical descriptor selection with three initialization (small, mixed and large). The K-nearest neighbor (KNN) was utilized for the fitness function of salps swarm optimization algorithm (SSOA) to choose a small number of features and achieve high classification accuracy. Experimental results reveal the capability of SSA to find an optimal feature subset which maximizes the classification performance and minimizes the number of selected features. A set of assessment indicators are used to evaluate and compared with different algorithms inclduing particle swarm optimization (PSO), Grasshopper Optimization Algorithm (GOA), Grey Wolf Optimizer(GWO), Sine Cosine Algorithm (SCA), Whale Optimization algorithm (WOA) using three initialization method and a superior accuracy was obtained with our proposed approach. Also, in comparison with other algorithms that used the same data, our approach has a higher performance using less number of features. The previous algorithms (GOA, GWO, PSO, SSA, SCA, WOA) are compared and three different methods are used to initialize the different optimization algorithms to ensure capability of the different optimizers to converge from different initial positions namely mixed initialization, small initialization, and large initialization.","PeriodicalId":321315,"journal":{"name":"2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELCIS.2017.8260072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

Abstract

The increasing size of chemical search space of chemical compound databases and importance of similarity measurements to drug discovery are main factors in chem.-informatics research. This paper introduces a swarming behavior of salps algorithm for predicting chemical compound activities. The salp optimization algorithm is proposed for chemical descriptor selection with three initialization (small, mixed and large). The K-nearest neighbor (KNN) was utilized for the fitness function of salps swarm optimization algorithm (SSOA) to choose a small number of features and achieve high classification accuracy. Experimental results reveal the capability of SSA to find an optimal feature subset which maximizes the classification performance and minimizes the number of selected features. A set of assessment indicators are used to evaluate and compared with different algorithms inclduing particle swarm optimization (PSO), Grasshopper Optimization Algorithm (GOA), Grey Wolf Optimizer(GWO), Sine Cosine Algorithm (SCA), Whale Optimization algorithm (WOA) using three initialization method and a superior accuracy was obtained with our proposed approach. Also, in comparison with other algorithms that used the same data, our approach has a higher performance using less number of features. The previous algorithms (GOA, GWO, PSO, SSA, SCA, WOA) are compared and three different methods are used to initialize the different optimization algorithms to ensure capability of the different optimizers to converge from different initial positions namely mixed initialization, small initialization, and large initialization.
一种预测海鞘化合物活性的群集行为算法
化学化合物数据库的化学搜索空间的不断扩大和相似度测量对药物发现的重要性是化学领域的主要因素。信息学研究。本文介绍了一种预测salps化合物活性的群体行为算法。提出了具有小、混合和大三种初始化的化学描述符选择的salp优化算法。利用k近邻(KNN)作为salps swarm optimization algorithm (SSOA)的适应度函数,选择少量的特征,达到较高的分类精度。实验结果表明,该方法能够找到一个最优的特征子集,使分类性能最大化,并使所选特征的数量最少。采用一组评价指标,对粒子群优化算法(PSO)、Grasshopper优化算法(GOA)、灰狼优化算法(GWO)、正弦余弦算法(SCA)、鲸鱼优化算法(WOA)等三种初始化算法进行了评价和比较,结果表明本文方法具有较高的精度。此外,与使用相同数据的其他算法相比,我们的方法使用更少的特征具有更高的性能。比较了以往的算法(GOA、GWO、PSO、SSA、SCA、WOA),并采用混合初始化、小初始化和大初始化三种不同的方法对不同的优化算法进行初始化,以保证不同优化器从不同初始位置收敛的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信