MLOps for evolvable AI intensive software systems

Sergio Moreschini, Francesco Lomio, David Hästbacka, D. Taibi
{"title":"MLOps for evolvable AI intensive software systems","authors":"Sergio Moreschini, Francesco Lomio, David Hästbacka, D. Taibi","doi":"10.1109/saner53432.2022.00155","DOIUrl":null,"url":null,"abstract":"DevOps practices are the de facto sandard when developing software. The increased adoption of machine learning (ML) to solve problems urges us to adapt all the current approaches to developing a new standard that can take full benefit from the new solution. In this work we propose a graphical representation for DevOps for ML-based applications, namely MLOps, and also outline open research challenges. The pipeline aims to get the best of both worlds by maintaining the simple and iconic pipeline of DevOps, yet improving it by adding new circular steps for ML incorporation. This aims to create an ML-based development subsystem that can be self-maintained, and is capable of evolving side-by-side with the software development.","PeriodicalId":437520,"journal":{"name":"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/saner53432.2022.00155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

DevOps practices are the de facto sandard when developing software. The increased adoption of machine learning (ML) to solve problems urges us to adapt all the current approaches to developing a new standard that can take full benefit from the new solution. In this work we propose a graphical representation for DevOps for ML-based applications, namely MLOps, and also outline open research challenges. The pipeline aims to get the best of both worlds by maintaining the simple and iconic pipeline of DevOps, yet improving it by adding new circular steps for ML incorporation. This aims to create an ML-based development subsystem that can be self-maintained, and is capable of evolving side-by-side with the software development.
可进化AI密集型软件系统的mlop
DevOps实践是开发软件时的事实标准。越来越多地采用机器学习(ML)来解决问题,这促使我们调整所有当前的方法来开发一个新的标准,可以从新的解决方案中充分受益。在这项工作中,我们提出了基于ml的应用程序(即mlop)的DevOps的图形表示,并概述了开放的研究挑战。该管道旨在通过维护DevOps的简单而标志性的管道,同时通过为ML合并添加新的循环步骤来改进它,从而获得两全其美的效果。这旨在创建一个基于机器学习的开发子系统,它可以自我维护,并且能够与软件开发并行发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信