Biologically inspired incremental learning for high-dimensional spaces

A. Gepperth, Thomas Hecht, Mathieu Lefort, Ursula Körner
{"title":"Biologically inspired incremental learning for high-dimensional spaces","authors":"A. Gepperth, Thomas Hecht, Mathieu Lefort, Ursula Körner","doi":"10.1109/DEVLRN.2015.7346155","DOIUrl":null,"url":null,"abstract":"We propose an incremental, highly parallelizable, and constant-time complexity neural learning architecture for multi-class classification (and regression) problems that remains resource-efficient even when the number of input dimensions is very high (≥ 1000). This so-called projection-prediction (PRO-PRE) architecture is strongly inspired by biological information processing in that it uses a prototype-based, topologically organized hidden layer that updates hidden layer weights whenever an error occurs. The employed self-organizing map (SOM) learning adapts only the weights of localized neural sub-populations that are similar to the input, which explicitly avoids the catastrophic forgetting effect of MLPs in case new input statistics are presented. The readout layer applies linear regression to hidden layer activities subjected to a transfer function, making the whole system capable of representing strongly non-linear decision boundaries. The resource-efficiency of the algorithm stems from approximating similarity in the input space by proximity in the SOM layer due to the topological SOM projection property. This avoids the storage of inter-cluster distances (quadratic in number of hidden layer elements) or input space covariance matrices (quadratic in input dimensions) as other incremental algorithms typically do. Tests on the popular MNIST handwritten digit benchmark show that the algorithm compares favorably to state-of-the-art results, and parallelizability is demonstrated by analyzing the efficiency of a parallel GPU implementation of the architecture.","PeriodicalId":164756,"journal":{"name":"2015 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2015.7346155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We propose an incremental, highly parallelizable, and constant-time complexity neural learning architecture for multi-class classification (and regression) problems that remains resource-efficient even when the number of input dimensions is very high (≥ 1000). This so-called projection-prediction (PRO-PRE) architecture is strongly inspired by biological information processing in that it uses a prototype-based, topologically organized hidden layer that updates hidden layer weights whenever an error occurs. The employed self-organizing map (SOM) learning adapts only the weights of localized neural sub-populations that are similar to the input, which explicitly avoids the catastrophic forgetting effect of MLPs in case new input statistics are presented. The readout layer applies linear regression to hidden layer activities subjected to a transfer function, making the whole system capable of representing strongly non-linear decision boundaries. The resource-efficiency of the algorithm stems from approximating similarity in the input space by proximity in the SOM layer due to the topological SOM projection property. This avoids the storage of inter-cluster distances (quadratic in number of hidden layer elements) or input space covariance matrices (quadratic in input dimensions) as other incremental algorithms typically do. Tests on the popular MNIST handwritten digit benchmark show that the algorithm compares favorably to state-of-the-art results, and parallelizability is demonstrated by analyzing the efficiency of a parallel GPU implementation of the architecture.
生物学启发的高维空间增量学习
我们提出了一种增量的、高度并行的、恒定时间复杂度的神经学习架构,用于多类分类(和回归)问题,即使在输入维数非常高(≥1000)的情况下,也能保持资源效率。这种所谓的投影预测(PRO-PRE)架构受到生物信息处理的强烈启发,因为它使用基于原型的拓扑组织的隐藏层,每当发生错误时更新隐藏层的权重。所采用的自组织映射(SOM)学习只适应与输入相似的局部神经亚群的权重,这明显避免了mlp在出现新输入统计时的灾难性遗忘效应。读出层将线性回归应用于受传递函数影响的隐藏层活动,使整个系统能够表示强非线性决策边界。由于拓扑SOM的投影特性,该算法的资源效率源于通过SOM层的接近性来近似输入空间中的相似性。这避免了存储簇间距离(隐藏层元素数量为二次元)或输入空间协方差矩阵(输入维数为二次元),而其他增量算法通常会这样做。在流行的MNIST手写数字基准测试上的测试表明,该算法优于最先进的结果,并且通过分析该架构的并行GPU实现的效率来证明并行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信