Sarcasm Detection on Twitter: A Behavioral Modeling Approach

Ashwin Rajadesingan, R. Zafarani, Huan Liu
{"title":"Sarcasm Detection on Twitter: A Behavioral Modeling Approach","authors":"Ashwin Rajadesingan, R. Zafarani, Huan Liu","doi":"10.1145/2684822.2685316","DOIUrl":null,"url":null,"abstract":"Sarcasm is a nuanced form of language in which individuals state the opposite of what is implied. With this intentional ambiguity, sarcasm detection has always been a challenging task, even for humans. Current approaches to automatic sarcasm detection rely primarily on lexical and linguistic cues. This paper aims to address the difficult task of sarcasm detection on Twitter by leveraging behavioral traits intrinsic to users expressing sarcasm. We identify such traits using the user's past tweets. We employ theories from behavioral and psychological studies to construct a behavioral modeling framework tuned for detecting sarcasm. We evaluate our framework and demonstrate its efficiency in identifying sarcastic tweets.","PeriodicalId":179443,"journal":{"name":"Proceedings of the Eighth ACM International Conference on Web Search and Data Mining","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"359","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2684822.2685316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 359

Abstract

Sarcasm is a nuanced form of language in which individuals state the opposite of what is implied. With this intentional ambiguity, sarcasm detection has always been a challenging task, even for humans. Current approaches to automatic sarcasm detection rely primarily on lexical and linguistic cues. This paper aims to address the difficult task of sarcasm detection on Twitter by leveraging behavioral traits intrinsic to users expressing sarcasm. We identify such traits using the user's past tweets. We employ theories from behavioral and psychological studies to construct a behavioral modeling framework tuned for detecting sarcasm. We evaluate our framework and demonstrate its efficiency in identifying sarcastic tweets.
Twitter上的讽刺检测:一种行为建模方法
讽刺是一种微妙的语言形式,人们在其中表达与所暗示的相反的东西。由于这种故意的歧义,讽刺检测一直是一项具有挑战性的任务,即使对人类来说也是如此。目前的自动讽刺检测方法主要依赖于词汇和语言线索。本文旨在通过利用用户表达讽刺的固有行为特征来解决Twitter上讽刺检测的困难任务。我们通过用户过去的推文来识别这些特征。我们采用行为学和心理学研究的理论来构建一个用于检测讽刺的行为建模框架。我们评估了我们的框架,并证明了它在识别讽刺推文方面的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信