D. Isgro, G. Mantegazza, S. Formentin, Giulio Panzani, S. Savaresi
{"title":"On-Line Data-Based Load Classification in Narrow-Track Vehicles","authors":"D. Isgro, G. Mantegazza, S. Formentin, Giulio Panzani, S. Savaresi","doi":"10.1109/ITSC.2018.8569017","DOIUrl":null,"url":null,"abstract":"In automotive applications, the knowledge of the vehicle load is a crucial factor that can bring significant improvement on safety and performance, e.g. in ABS or semiactive suspensions control. In narrow-track vehicles, this aspect is even more important, considering that the mass variation - w.r.t to the vehicle one - is higher than in standard vehicles. The objective of this work is to present an on-line data-based mass classifier based on inertial sensors only. The effectiveness of the approach is assessed on experimental data taken from a real vehicle.","PeriodicalId":395239,"journal":{"name":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2018.8569017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In automotive applications, the knowledge of the vehicle load is a crucial factor that can bring significant improvement on safety and performance, e.g. in ABS or semiactive suspensions control. In narrow-track vehicles, this aspect is even more important, considering that the mass variation - w.r.t to the vehicle one - is higher than in standard vehicles. The objective of this work is to present an on-line data-based mass classifier based on inertial sensors only. The effectiveness of the approach is assessed on experimental data taken from a real vehicle.