Parameter estimation and denoising of 2-D noisy fractional Brownian motion using non-orthogonal wavelets

Jen-Chang Liu, W. Hwang
{"title":"Parameter estimation and denoising of 2-D noisy fractional Brownian motion using non-orthogonal wavelets","authors":"Jen-Chang Liu, W. Hwang","doi":"10.1109/TFSA.1998.721378","DOIUrl":null,"url":null,"abstract":"Fractional Brownian motion (fBm) is a non-stationary stochastic model, which has a 1/f spectrum and statistical self-similar property. We extend the proposed methods of Hwang to an isotropic 2-D noisy fBm image. The extension is not straightforward; although one can obtain the fractal parameter of an isotropic fBm by averaging of the estimated fractal parameters from several directions by means of the 1-D fractal parameter estimation algorithm, this approach does not perform well in practice. It was shown by Hwang that it requires more than 1000 sampled points for a robust 1-D fractal parameter estimation. For a median size image (say with size 256 by 256 or smaller), there is not enough pixels at each direction for a robust 1-D fractal parameter estimation. Thus, alternative methods must be developed in order that the robustness fractal estimation from a noisy fBm image with small size can be achieved. In this paper, we show that the wavelet transform of an isotropic fBm image at each scale is a two-dimensional weakly stationary process at both the horizontal and vertical directions. Thus, robust fractal parameter estimation can be obtained from two-dimensional wavelet coefficients, even for a small noisy fBm image. We propose a fractal parameter estimation algorithm which formulates the robust fractal parameter estimation problem as the characterization of a composite singularity from the autocorrelation of wavelet transforms of a noisy fBm image.","PeriodicalId":395542,"journal":{"name":"Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TFSA.1998.721378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fractional Brownian motion (fBm) is a non-stationary stochastic model, which has a 1/f spectrum and statistical self-similar property. We extend the proposed methods of Hwang to an isotropic 2-D noisy fBm image. The extension is not straightforward; although one can obtain the fractal parameter of an isotropic fBm by averaging of the estimated fractal parameters from several directions by means of the 1-D fractal parameter estimation algorithm, this approach does not perform well in practice. It was shown by Hwang that it requires more than 1000 sampled points for a robust 1-D fractal parameter estimation. For a median size image (say with size 256 by 256 or smaller), there is not enough pixels at each direction for a robust 1-D fractal parameter estimation. Thus, alternative methods must be developed in order that the robustness fractal estimation from a noisy fBm image with small size can be achieved. In this paper, we show that the wavelet transform of an isotropic fBm image at each scale is a two-dimensional weakly stationary process at both the horizontal and vertical directions. Thus, robust fractal parameter estimation can be obtained from two-dimensional wavelet coefficients, even for a small noisy fBm image. We propose a fractal parameter estimation algorithm which formulates the robust fractal parameter estimation problem as the characterization of a composite singularity from the autocorrelation of wavelet transforms of a noisy fBm image.
基于非正交小波的二维带噪分数布朗运动参数估计与去噪
分数阶布朗运动(fBm)是一种具有1/f谱和统计自相似性质的非平稳随机模型。我们将Hwang提出的方法扩展到各向同性的二维噪声fBm图像。扩展并不简单;虽然可以通过一维分形参数估计算法对多个方向估计的分形参数进行平均得到各向同性fBm的分形参数,但这种方法在实际应用中表现不佳。Hwang表明,要进行稳健的一维分形参数估计,需要超过1000个采样点。对于中位数大小的图像(比如256 * 256或更小),每个方向上没有足够的像素来进行稳健的一维分形参数估计。因此,为了实现小尺寸噪声fBm图像的鲁棒分形估计,必须开发替代方法。在本文中,我们证明了各向同性fBm图像在每个尺度上的小波变换在水平和垂直方向上都是一个二维弱平稳过程。因此,即使对于小噪声fBm图像,也可以从二维小波系数中获得鲁棒分形参数估计。本文提出了一种分形参数估计算法,该算法将鲁棒分形参数估计问题表述为用噪声fBm图像的小波变换的自相关来表征复合奇点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信