Combining vs. Transferring Knowledge: Investigating Strategies for Improving Demographic Inference in Low Resource Settings

Yaguang Liu, Lisa Singh
{"title":"Combining vs. Transferring Knowledge: Investigating Strategies for Improving Demographic Inference in Low Resource Settings","authors":"Yaguang Liu, Lisa Singh","doi":"10.1145/3539597.3570462","DOIUrl":null,"url":null,"abstract":"For some learning tasks, generating a large labeled data set is impractical. Demographic inference using social media data is one such task. While different strategies have been proposed to mitigate this challenge, including transfer learning, data augmentation, and data combination, they have not been explored for the task of user level demographic inference using social media data. This paper explores two of these strategies: data combination and transfer learning. First, we combine labeled training data from multiple data sets of similar size to understand when the combination is valuable and when it is not. Using data set distance, we quantify the relationship between our data sets to help explain the performance of the combination strategy. Then, we consider supervised transfer learning, where we pretrain a model on a larger labeled data set, fine-tune the model on smaller data sets, and incorporate regularization as part of the transfer learning process. We empirically show the strengths and limitations of the proposed techniques on multiple Twitter data sets.","PeriodicalId":227804,"journal":{"name":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539597.3570462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For some learning tasks, generating a large labeled data set is impractical. Demographic inference using social media data is one such task. While different strategies have been proposed to mitigate this challenge, including transfer learning, data augmentation, and data combination, they have not been explored for the task of user level demographic inference using social media data. This paper explores two of these strategies: data combination and transfer learning. First, we combine labeled training data from multiple data sets of similar size to understand when the combination is valuable and when it is not. Using data set distance, we quantify the relationship between our data sets to help explain the performance of the combination strategy. Then, we consider supervised transfer learning, where we pretrain a model on a larger labeled data set, fine-tune the model on smaller data sets, and incorporate regularization as part of the transfer learning process. We empirically show the strengths and limitations of the proposed techniques on multiple Twitter data sets.
结合与转移知识:低资源环境下改善人口统计推断的调查策略
对于一些学习任务,生成一个大的标记数据集是不切实际的。利用社交媒体数据进行人口统计推断就是这样一项任务。虽然已经提出了不同的策略来缓解这一挑战,包括迁移学习、数据增强和数据组合,但尚未对使用社交媒体数据进行用户级人口统计推断的任务进行探索。本文探讨了其中的两种策略:数据组合和迁移学习。首先,我们将来自多个大小相似的数据集的标记训练数据组合起来,以了解何时组合有价值,何时没有价值。使用数据集距离,我们量化了数据集之间的关系,以帮助解释组合策略的性能。然后,我们考虑监督迁移学习,其中我们在较大的标记数据集上预训练模型,在较小的数据集上微调模型,并将正则化作为迁移学习过程的一部分。我们在多个Twitter数据集上实证地展示了所提出的技术的优势和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信