Complexidade computacional de um algoritmo competitivo aplicado ao projeto de quantizadores vetoriais

F. Madeiro, W. Lopes, B. G. A. Neto, M. Alencar
{"title":"Complexidade computacional de um algoritmo competitivo aplicado ao projeto de quantizadores vetoriais","authors":"F. Madeiro, W. Lopes, B. G. A. Neto, M. Alencar","doi":"10.21528/LNLM-VOL2-NO1-ART4","DOIUrl":null,"url":null,"abstract":"In the present paper, the computational complexity of a competitive learning algorithm applied to vector quantization (VQ) codebook design is investigated. Analytical expressions (as a function of the codebook size, the dimension of the codevectors, the number of training vectors and the number of iterations performed) are derived for the number of operations (multiplications, divisions, additions, subtractions and comparisons) performed by the competitive algorithm. Analytical expressions are also derived for the tradional LBG (Linde-Buzo-Gray) algorithm. Regarding VQ codebook design for image coding, results show that the computational complexity of the competitive algorithm is lower than that of LBG.","PeriodicalId":386768,"journal":{"name":"Learning and Nonlinear Models","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning and Nonlinear Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21528/LNLM-VOL2-NO1-ART4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In the present paper, the computational complexity of a competitive learning algorithm applied to vector quantization (VQ) codebook design is investigated. Analytical expressions (as a function of the codebook size, the dimension of the codevectors, the number of training vectors and the number of iterations performed) are derived for the number of operations (multiplications, divisions, additions, subtractions and comparisons) performed by the competitive algorithm. Analytical expressions are also derived for the tradional LBG (Linde-Buzo-Gray) algorithm. Regarding VQ codebook design for image coding, results show that the computational complexity of the competitive algorithm is lower than that of LBG.
应用于矢量量化器设计的竞争算法的计算复杂性
本文研究了一种用于矢量量化(VQ)码本设计的竞争学习算法的计算复杂度。对于竞争性算法执行的操作(乘法、除法、加法、减法和比较)的数量,导出了解析表达式(作为码本大小、编码向量的维度、训练向量的数量和执行的迭代次数的函数)。本文还推导了传统LBG (Linde-Buzo-Gray)算法的解析表达式。对于用于图像编码的VQ码本设计,结果表明,竞争算法的计算复杂度低于LBG算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信