Deep Learning Architecture for Processing Cyber-Physical Data in the Electric Grid

Daniel Calzada, S. Hossain-McKenzie, Zeyu Mao
{"title":"Deep Learning Architecture for Processing Cyber-Physical Data in the Electric Grid","authors":"Daniel Calzada, S. Hossain-McKenzie, Zeyu Mao","doi":"10.1109/PECI54197.2022.9744015","DOIUrl":null,"url":null,"abstract":"Due to the increasing complexity of energy systems and consequent increase in attack vectors, protecting the power grid from unknown disturbances and attacks using special protection schemes is crucial. In this paper, we discuss the machine learning component of the HARMONIE special protection scheme which relies on a novel combination of graph neural networks and Transformer models to jointly process cyber (network) and physical data. Our approach shows promise in detecting cyber and physical disturbances and includes the capability to identify relevant portions of the input sequence that contribute to the model’s prediction. With this in place, the end goal of developing automated mitigation strategies is within reach.","PeriodicalId":245119,"journal":{"name":"2022 IEEE Power and Energy Conference at Illinois (PECI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Power and Energy Conference at Illinois (PECI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECI54197.2022.9744015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Due to the increasing complexity of energy systems and consequent increase in attack vectors, protecting the power grid from unknown disturbances and attacks using special protection schemes is crucial. In this paper, we discuss the machine learning component of the HARMONIE special protection scheme which relies on a novel combination of graph neural networks and Transformer models to jointly process cyber (network) and physical data. Our approach shows promise in detecting cyber and physical disturbances and includes the capability to identify relevant portions of the input sequence that contribute to the model’s prediction. With this in place, the end goal of developing automated mitigation strategies is within reach.
处理电网网络物理数据的深度学习体系结构
由于能源系统的复杂性和随之而来的攻击向量的增加,使用特殊的保护方案保护电网免受未知干扰和攻击是至关重要的。在本文中,我们讨论了HARMONIE特殊保护方案的机器学习组件,该方案依赖于图神经网络和Transformer模型的新颖组合来共同处理网络(网络)和物理数据。我们的方法在检测网络和物理干扰方面显示出希望,并且包括识别有助于模型预测的输入序列的相关部分的能力。有了这些,开发自动化缓解策略的最终目标就触手可及了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信