Lower Bounds on the Expected Excess Risk Using Mutual Information

M. B. Dogan, M. Gastpar
{"title":"Lower Bounds on the Expected Excess Risk Using Mutual Information","authors":"M. B. Dogan, M. Gastpar","doi":"10.1109/ITW48936.2021.9611483","DOIUrl":null,"url":null,"abstract":"The expected excess risk of a learning algorithm is the average suboptimality of using the learning algorithm, relative to the optimal hypothesis in the hypothesis class. In this work, we lower bound the expected excess risk of a learning algorithm using the mutual information between the input and the noisy output of the learning algorithm. The setting we consider is, where the hypothesis class is the set of real numbers and the true risk function has a local strong convexity property. Our main results also lead to asymptotic lower bounds on the expected excess risk, which do not require the knowledge of the local strong convexity constants of the true risk function.","PeriodicalId":325229,"journal":{"name":"2021 IEEE Information Theory Workshop (ITW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW48936.2021.9611483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The expected excess risk of a learning algorithm is the average suboptimality of using the learning algorithm, relative to the optimal hypothesis in the hypothesis class. In this work, we lower bound the expected excess risk of a learning algorithm using the mutual information between the input and the noisy output of the learning algorithm. The setting we consider is, where the hypothesis class is the set of real numbers and the true risk function has a local strong convexity property. Our main results also lead to asymptotic lower bounds on the expected excess risk, which do not require the knowledge of the local strong convexity constants of the true risk function.
基于互信息的期望超额风险下界
学习算法的预期超额风险是相对于假设类中的最优假设,使用该学习算法的平均次优性。在这项工作中,我们使用学习算法的输入和噪声输出之间的互信息来降低学习算法的预期超额风险。我们考虑的设置是,假设类是实数的集合,真实风险函数具有局部强凸性。我们的主要结果也导致了期望超额风险的渐近下界,它不需要知道真实风险函数的局部强凸常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信