{"title":"Dynamic Behavior of a 220-Kv Dead-End Suspension Bus during Short Circuit","authors":"A. T. Atwood, M. H. Mills, D. Downs, H. M. Stone","doi":"10.1109/AIEEPAS.1962.4501289","DOIUrl":null,"url":null,"abstract":"A full-size 220-kv dead-end twin-bundled conductor suspension bus was subjected to short-circuit currents of various magnitudes and durations. Transducers and instruments available allowed the measurement and recording of many physical variables during these tests. Maximum short-circuit magnitude was 30,000 rms amperes. Short-circuit currents cause dynamic forces to be applied to the bus conductors, hardware, and towers. The major shock force is a result of the twin conductors being pulled together between spreaders by the short-circuit magnetic forces. The number and location of twin conductor spreaders have considerable influence on the peak magnitude of the dynamic forces. Electrical and mechanical damage to conductors as a result of a short circuit was negligible. This suspension bus design proved to be adequate for a shortcircuit duty of 10 million kva (kilovoltamperes) at 220 kv, and with minor modifications it may be adequate for 20 million kva at 220 kv.","PeriodicalId":118797,"journal":{"name":"Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1962-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIEEPAS.1962.4501289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
A full-size 220-kv dead-end twin-bundled conductor suspension bus was subjected to short-circuit currents of various magnitudes and durations. Transducers and instruments available allowed the measurement and recording of many physical variables during these tests. Maximum short-circuit magnitude was 30,000 rms amperes. Short-circuit currents cause dynamic forces to be applied to the bus conductors, hardware, and towers. The major shock force is a result of the twin conductors being pulled together between spreaders by the short-circuit magnetic forces. The number and location of twin conductor spreaders have considerable influence on the peak magnitude of the dynamic forces. Electrical and mechanical damage to conductors as a result of a short circuit was negligible. This suspension bus design proved to be adequate for a shortcircuit duty of 10 million kva (kilovoltamperes) at 220 kv, and with minor modifications it may be adequate for 20 million kva at 220 kv.