Safety verification of nonlinear systems based on rational invariants

Wang Lin, Min Wu, Zhengfeng Yang, Zhenbing Zeng
{"title":"Safety verification of nonlinear systems based on rational invariants","authors":"Wang Lin, Min Wu, Zhengfeng Yang, Zhenbing Zeng","doi":"10.1145/2631948.2631967","DOIUrl":null,"url":null,"abstract":"where x ∈ R is the state variable, and f(x) is a vector of rational functions in x over Q. We consider the dynamics of (1) in a bounded domain of the state space R, given by Ψ , {x ∈ R|ψ1(x) ≥ 0 ∧ · · · ∧ ψr(x) ≥ 0}, with ψi(x) ∈ Q[x] for 1 ≤ i ≤ r. We say that the system (1) is safe if all trajectories of (1) starting from any state in the initial set, can not evolve to the unsafe states. We are interested in the problem of safety verification of nonlinear system (1), described as follows.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2631948.2631967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

where x ∈ R is the state variable, and f(x) is a vector of rational functions in x over Q. We consider the dynamics of (1) in a bounded domain of the state space R, given by Ψ , {x ∈ R|ψ1(x) ≥ 0 ∧ · · · ∧ ψr(x) ≥ 0}, with ψi(x) ∈ Q[x] for 1 ≤ i ≤ r. We say that the system (1) is safe if all trajectories of (1) starting from any state in the initial set, can not evolve to the unsafe states. We are interested in the problem of safety verification of nonlinear system (1), described as follows.
基于有理不变量的非线性系统安全性验证
x∈R是状态变量,f (x)是一个向量的理性功能x /问:我们考虑(1)的动力学在一个有限域的状态空间R,由Ψ,{x∈R |ψ1 (x)≥0∧···∧ψR (x)≥0},ψ我(x)∈Q [x] 1≤≤R。我们说系统(1)是安全的,如果所有的轨迹(1)从任何初始状态,不能进化的不安全状态。我们感兴趣的是非线性系统(1)的安全验证问题,描述如下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信