The sum of width-one tensors

William Q. Erickson, Jan Kretschmann
{"title":"The sum of width-one tensors","authors":"William Q. Erickson, Jan Kretschmann","doi":"10.54550/eca2024v4s1r7","DOIUrl":null,"url":null,"abstract":": This paper generalizes a recent result concerning the sum of width-one matrices; in the present work, we consider width-one tensors of arbitrary dimensions. A tensor is said to be width-one if, when visualized as an array, its nonzero entries lie along a path consisting of steps in the positive directions of the standard coordinate vectors. We prove two formulas to compute the sum of all width-one tensors with fixed dimensions and fixed sum of (nonnegative integer) components. The first formula is obtained by converting width-one tensors into tuples of one-row semistandard Young tableaux (thereby inverting the northwest corner rule from optimal transport theory). The second formula, which extracts coefficients from products of multiset Eulerian polynomials, is derived via Stanley–Reisner theory, making use of the EL-shelling of the order complex on the standard basis of tensors.","PeriodicalId":340033,"journal":{"name":"Enumerative Combinatorics and Applications","volume":"275 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enumerative Combinatorics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54550/eca2024v4s1r7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: This paper generalizes a recent result concerning the sum of width-one matrices; in the present work, we consider width-one tensors of arbitrary dimensions. A tensor is said to be width-one if, when visualized as an array, its nonzero entries lie along a path consisting of steps in the positive directions of the standard coordinate vectors. We prove two formulas to compute the sum of all width-one tensors with fixed dimensions and fixed sum of (nonnegative integer) components. The first formula is obtained by converting width-one tensors into tuples of one-row semistandard Young tableaux (thereby inverting the northwest corner rule from optimal transport theory). The second formula, which extracts coefficients from products of multiset Eulerian polynomials, is derived via Stanley–Reisner theory, making use of the EL-shelling of the order complex on the standard basis of tensors.
宽度为1张量的和
推广了最近关于宽度为1的矩阵和的一个结果;在本工作中,我们考虑任意维的宽一张量。如果将张量可视化为一个数组,它的非零项沿着一条由标准坐标向量的正方向上的步骤组成的路径,则称其宽度为1。我们证明了两个计算所有固定维宽一张量和固定(非负整数)分量和的公式。第一个公式是通过将宽度为1的张量转换为单行半标准杨氏表的元组而得到的(从而颠倒了最优输运理论中的西北角规则)。第二个公式是利用张量标准基上复阶的el壳化,利用Stanley-Reisner理论,从多集欧拉多项式的乘积中提取系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信