{"title":"Optimization via efficient learning in CNNs: Cognitively-motivated temporal discount functions in SRNNs","authors":"R. Kozma, R. Ilin","doi":"10.1109/CNNA.2010.5430289","DOIUrl":null,"url":null,"abstract":"Cellular Neural Networks (CNNs) are universal computing machines embodying basic computational principles of cortical tissues. Simultaneous Recurrent Neural Networks (SRNNs) have shown clear advantages in solving complex optimization and decision making problems. Based on biological intuition, we introduce temporal discount functions in training SRNNs as a generalization of the adaptive learning rate concept. The proposed procedure results in drastic, 3-5-fold acceleration of learning, demonstrated through the maze navigation problem.","PeriodicalId":336891,"journal":{"name":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2010.5430289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Cellular Neural Networks (CNNs) are universal computing machines embodying basic computational principles of cortical tissues. Simultaneous Recurrent Neural Networks (SRNNs) have shown clear advantages in solving complex optimization and decision making problems. Based on biological intuition, we introduce temporal discount functions in training SRNNs as a generalization of the adaptive learning rate concept. The proposed procedure results in drastic, 3-5-fold acceleration of learning, demonstrated through the maze navigation problem.