Optimization via efficient learning in CNNs: Cognitively-motivated temporal discount functions in SRNNs

R. Kozma, R. Ilin
{"title":"Optimization via efficient learning in CNNs: Cognitively-motivated temporal discount functions in SRNNs","authors":"R. Kozma, R. Ilin","doi":"10.1109/CNNA.2010.5430289","DOIUrl":null,"url":null,"abstract":"Cellular Neural Networks (CNNs) are universal computing machines embodying basic computational principles of cortical tissues. Simultaneous Recurrent Neural Networks (SRNNs) have shown clear advantages in solving complex optimization and decision making problems. Based on biological intuition, we introduce temporal discount functions in training SRNNs as a generalization of the adaptive learning rate concept. The proposed procedure results in drastic, 3-5-fold acceleration of learning, demonstrated through the maze navigation problem.","PeriodicalId":336891,"journal":{"name":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2010.5430289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cellular Neural Networks (CNNs) are universal computing machines embodying basic computational principles of cortical tissues. Simultaneous Recurrent Neural Networks (SRNNs) have shown clear advantages in solving complex optimization and decision making problems. Based on biological intuition, we introduce temporal discount functions in training SRNNs as a generalization of the adaptive learning rate concept. The proposed procedure results in drastic, 3-5-fold acceleration of learning, demonstrated through the maze navigation problem.
cnn中有效学习的优化:srnn中的认知动机时间折扣函数
细胞神经网络(cnn)是体现皮层组织基本计算原理的通用计算机器。同步递归神经网络(SRNNs)在解决复杂的优化和决策问题方面显示出明显的优势。基于生物直觉,我们将时间折现函数作为自适应学习率概念的推广引入srnn训练中。通过迷宫导航问题可以证明,该方法的学习速度是原来的3-5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信