On the Hilbert Function of Intersections of a Hypersurface with General Reducible Curves

E. Ballico
{"title":"On the Hilbert Function of Intersections of a Hypersurface with General Reducible Curves","authors":"E. Ballico","doi":"10.51286/albjm/1608313767","DOIUrl":null,"url":null,"abstract":"Let $W\\subset \\mathbb {P}^n$, $n\\ge 3$, be a degree $k$ hypersurface. Consider a \"general\" reducible, but connected, curve $Y\\subset \\mathbb {P}^n$, for instance a sufficiently general connected and nodal union of lines with $p_a(Y)=0$, i.e. a tree of lines. We study the Hilbert function of the set $Y\\cap W$ with cardinality $k°(Y)$ and prove when it is the expected one. We give complete classification of the exceptions for $k=2$ and for $n=k=3$. We apply these results and tools to the case in which $Y$ is a smooth curve with $\\mathcal {O}_Y(1)$ non-special.","PeriodicalId":309211,"journal":{"name":"Albanian Journal of Mathematics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Albanian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51286/albjm/1608313767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $W\subset \mathbb {P}^n$, $n\ge 3$, be a degree $k$ hypersurface. Consider a "general" reducible, but connected, curve $Y\subset \mathbb {P}^n$, for instance a sufficiently general connected and nodal union of lines with $p_a(Y)=0$, i.e. a tree of lines. We study the Hilbert function of the set $Y\cap W$ with cardinality $k°(Y)$ and prove when it is the expected one. We give complete classification of the exceptions for $k=2$ and for $n=k=3$. We apply these results and tools to the case in which $Y$ is a smooth curve with $\mathcal {O}_Y(1)$ non-special.
一般可约曲线超曲面交点的Hilbert函数
让 $W\subset \mathbb {P}^n$, $n\ge 3$是一个学位 $k$ 超曲面。考虑一条“一般的”可约但相连的曲线 $Y\subset \mathbb {P}^n$,例如,具有的线的足够一般的连接和节点并 $p_a(Y)=0$,即一行的树。我们研究了集合的希尔伯特函数 $Y\cap W$ 具有基数性 $k°(Y)$ 并证明它是预期的。我们对例外情况进行了完整的分类 $k=2$ 对于 $n=k=3$. 我们将这些结果和工具应用于 $Y$ 曲线是光滑的吗 $\mathcal {O}_Y(1)$ 非特殊的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信