QR Approximation for Fronthaul Compression in Uplink Massive MIMO

P. Aswathylakshmi, R. Ganti
{"title":"QR Approximation for Fronthaul Compression in Uplink Massive MIMO","authors":"P. Aswathylakshmi, R. Ganti","doi":"10.1109/GCWkshps45667.2019.9024609","DOIUrl":null,"url":null,"abstract":"Massive MIMO's immense potential to expand the capacity of base stations also comes with the caveat of requiring tremendous processing power. This favours a centralized radio access network (C-RAN) architecture that concentrates the processing power at a common baseband unit (BBU) connected to multiple remote radio heads (RRH) via fronthaul links. The large bandwidths of 5G make the fronthaul data rate a major bottleneck. Since the number of active users in a massive MIMO system is much smaller than the number of antennas, we propose a dimension reduction scheme based on QR approximation for fronthaul data compression. Link level simulations show that the proposed method achieves more than 17Ã- compression while also improving the error performance of the system through denoising.","PeriodicalId":210825,"journal":{"name":"2019 IEEE Globecom Workshops (GC Wkshps)","volume":"47 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps45667.2019.9024609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Massive MIMO's immense potential to expand the capacity of base stations also comes with the caveat of requiring tremendous processing power. This favours a centralized radio access network (C-RAN) architecture that concentrates the processing power at a common baseband unit (BBU) connected to multiple remote radio heads (RRH) via fronthaul links. The large bandwidths of 5G make the fronthaul data rate a major bottleneck. Since the number of active users in a massive MIMO system is much smaller than the number of antennas, we propose a dimension reduction scheme based on QR approximation for fronthaul data compression. Link level simulations show that the proposed method achieves more than 17Ã- compression while also improving the error performance of the system through denoising.
面向上行海量MIMO的前传压缩QR逼近
大规模MIMO在扩大基站容量方面的巨大潜力,也伴随着需要巨大处理能力的警告。这有利于集中式无线电接入网(C-RAN)架构,该架构将处理能力集中在通过前传链路连接到多个远程无线电头(RRH)的公共基带单元(BBU)上。5G的大带宽使前传数据速率成为主要瓶颈。针对大规模MIMO系统中活跃用户数量远小于天线数量的问题,提出了一种基于QR逼近的前传数据降维压缩方案。链路级仿真结果表明,该方法在实现17Ã-以上压缩的同时,还通过去噪改善了系统的误差性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信