{"title":"Channel Estimation and Physical Layer Security in Optical MIMO-OFDM based LED Index Modulation","authors":"Furkan Batuhan Okumus, E. Panayirci, M. Khalighi","doi":"10.1109/SSP53291.2023.10208079","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new and low-complexity channel estimation algorithm for the generalized LED index modulation (GLIM), recently proposed for visible-light communication systems based on multi-input multi-output (MIMO) and orthogonal frequency-division multiplexing (OFDM). For this scheme, denoted by GLIM-OFDM, we investigate the bit-error rate (BER), the mean-square error (MSE) of channel estimation, as well as the Cramer-Rao bound on the latter. Furthermore, we present a novel physical layer security (PLS) technique for the GLIM-OFDM scheme using precoding at the transmitter assuming it has the channel state information (CSI) between the LEDs and a legitimate user, but no knowledge of the CSI corresponding to eavesdroppers. The efficiency of the proposed PLS technique is demonstrated through numerical results.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a new and low-complexity channel estimation algorithm for the generalized LED index modulation (GLIM), recently proposed for visible-light communication systems based on multi-input multi-output (MIMO) and orthogonal frequency-division multiplexing (OFDM). For this scheme, denoted by GLIM-OFDM, we investigate the bit-error rate (BER), the mean-square error (MSE) of channel estimation, as well as the Cramer-Rao bound on the latter. Furthermore, we present a novel physical layer security (PLS) technique for the GLIM-OFDM scheme using precoding at the transmitter assuming it has the channel state information (CSI) between the LEDs and a legitimate user, but no knowledge of the CSI corresponding to eavesdroppers. The efficiency of the proposed PLS technique is demonstrated through numerical results.